Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM−/−) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM−/− cells that resulted in enhanced adhesion of leukocytes to TM−/− cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM−/− cells. In a flow chamber assay, isolated platelets adhered to TM−/− cells, forming characteristic VWF–platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM−/− cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.
Our study in a multicenter setting proves the consistently better performance of automated anesthesia drug delivery compared with conventional manual control. This highlights an important advantage of an automated system for delivering standardized anesthesia, thereby overcoming differences in practices among anesthesiologists.
Purpose: To compare serum total calcium and phosphate levels in patients with non-severe COVID-19 with age, sex, and serum 25-hydroxyvitamin D level matched healthy adult cohort.Methods: In this retrospective case-control study, medical records of patients (≥18 years) diagnosed as non-severe COVID-19 admitted at and discharged from our tertiary care institution during the period from April 10, 2020 and June 20, 2020 were retrieved. Baseline investigations, notably, serum calcium, phosphate, albumin, magnesium, 25-hydroxyvitamin D, and C-reactive protein (CRP), were performed at admission before any form of calcium or vitamin D supplementation were considered. The biochemical parameters were compared with age, sex, and 25-hydroxyvitamin D matched healthy adult controls (1:1 ratio) derived from the Chandigarh Urban Bone Epidemiological Study (CUBES).Results: After exclusion, 72 patients with non-severe COVID-19 (63 mild and 9 moderate disease) and an equal number of healthy controls were included in the final analysis. Age, sex, serum 25-hydroxyvitamin D, and albumin levels were matched between the 2 groups. Hypovitaminosis D and hypocalcemia were seen in 97 and 67% of the patients, respectively. The patients had lower serum calcium (P value <0.001) and phosphate (P = 0.007) compared with the controls. There was no statistically significant correlation between serum calcium and CRP.Conclusions: Hypocalcemia is highly prevalent even in COVID-19 patients with non-severe disease probably implying that hypocalcemia is intrinsic to the disease. Prospective studies with larger number of patients are required to prove this hypothesis and unravel the underlying pathophysiological mechanisms.
Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world. The range of the disease is broad but among hospitalized patients with COVID-19 are coagulation disorders, pneumonia, respiratory failure, and acute respiratory distress syndrome (ARDS). The excess production of early response proinflammatory cytokines results in what has been described as a cytokine storm, leading to an increased risk of thrombosis, inflammations, vascular hyperpermeability, multi-organ failure, and eventually death over time. As the pandemic is spreading and the whole picture is not yet clear, we highlight the importance of coagulation disorders in COVID-19 infected subjects and summarize it. COVID-19 infection could induce coagulation disorders leading to clot formation as well as pulmonary embolism with detrimental effects in patient recovery and survival. Coagulation and inflammation are closely related. In this review, we try to establish an association between virus infections associated with innate immune activation, inflammation and coagulation activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.