In the present study, we have fabricated electrospun poly(ε-caprolactone)-based membranes, characterized and studied the in vivo cell migration and proliferation and wound healing activity. Moreover, we did not seed any cells prior to the animal implantation and we could observe excellent fibroblast attachment and cell proliferation. Further full thickness excision wound on guinea pig completely healed within 35 days. We could reach in an assumption that the enhanced cell proliferation and wound healing might be due to the surface degradation of the polymer under physiological conditions and the formation of functional groups like hydroxyl and carboxyl groups that promoted cell proliferation in a cell adhesion protein mediated mechanism. This study is a novel tissue engineering concept for the reconstruction of a damaged tissue without the in vitro cell seeding and proliferation prior to the in vivo implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.