Temperature sensing system has been designed and fluorescence lifetime measurements have been performed to estimate the temperature. (4)S(3/2) lifetime of LaF(3):Er(3+) and (5)S(2) lifetime of LaF(3):Ho(3+) have been measured as a function of temperature. Lifetime versus temperature calibration plots have been made up to 1000 degrees C.
Temperature is an important parameter that needs accurate measurement. Theoretical descriptions of the fluorescence ratio method, fluorescence lifetime sensing, and interferometric methods for temperature measurement are given. Fluorescence lifetime sensing calibration plots have been developed for temperature measurement from 20°C to 600°C using Er(3+)-doped glass, and from 20°C to 90°C using Sm(3+)-doped CaF(2). Lifetime sensing results of Pr(3+)-doped YAG and Ho(3+)-doped fluoride crystals for temperature measurement are also summarized. Mach-Zehnder interferometer measurements revealed that the passage of a 300 mW laser beam of 915 nm changed the temperature of the Yb(3+)-doped YAG crystal by 7.1°C. The interferometer technique is useful for measuring absolute temperature changes in laser cooling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.