In this study, we report synthesis and characterization of novel carbazole-based group of uniform materials based on organic salts (GUMBOS), as well as potential applications of these compounds. These organic-based compounds exhibit high thermal stability (decomposition temperatures in the range of 395−432 °C) and photostability. In addition, these compounds have appreciably high fluorescence quantum yields (73−99%) with broad emissions in the visible region and quantum yields which depend on the GUMBOS counteranion. The physicochemical, optical, and electrochemical properties of these materials are investigated and detailed here. Evaluation of band gap values (3.4 eV), HOMO−LUMO energy levels, and measured fluorescence quantum yields as compared to carbazole suggest potential use in organic light-emitting diodes. Computational results are found to be complementary to experimental results, and calculated band gaps are in agreement with experimentally obtain values.
We investigate the new simultaneous Absorbance-Transmission and fluorescence Excitation-Emission Matrix method for rapid and effective characterization of the varying components from a mixture. The Absorbance-Transmission and fluorescence Excitation-Emission Matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries.
We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.