Activation with lipopolysaccharide induces macrophages to produce the enzymes arginase and nitric oxide (NO) synthase. Both enzymes use as a substrate the amino acid L-arginine, which can be either hydrolyzed by arginase to urea and ornithine or oxidized by NO synthase to NO and citrulline. NO is important in the bactericidal and cytotoxic activities of macrophages. An equivalent functional role of arginase and its products is not known. We tested the induction of arginase in bone marrow-derived macrophages by endogenous mediators that are known to induce NO synthase, such as interferon-gamma (IFN-gamma), or suppress the induction of this enzyme, such as interleukin (IL)-4, IL-10, and prostaglandin E2 (PGE2). We find that PGE2 and the TH2 cytokines IL-4 and IL-10 are potent inducers of arginase. In contrast, the TH1 cytokine IFN-gamma does not induce arginase. Simultaneous application of both types of mediators leads to reduced induction of both arginase and NO synthase. Exposure of macrophage cultures to inducers of NO synthase exhausts their ability to respond subsequently to inducers of arginase. Conversely, exposure of the cells to inducers of arginase exhausts their ability to respond subsequently to inducers of NO synthase. The results are consistent with a competition of both enzymes for their substrate, L-arginine, with a reciprocal inhibition in the induction of both enzymes, or a combination of both phenomena. The enzymes NO synthase and arginase appear to define two alternate functional states of macrophages, induced by TH1 and TH2 cytokines, respectively.
Polyamine synthesis from l-ornithine is essential for Leishmania growth. We have investigated the dependence of Leishmania infection on arginase, which generates l-ornithine, in macrophages from BALB/c, C57BL/6, and nitric oxide synthase II (NOS II)-deficient mouse strains. We have found that N
ω-hydroxy-l-arginine (LOHA), a physiological inhibitor of arginase, controls cellular infection and also specifically inhibits arginase activity from Leishmania major and Leishmania infantum parasites. The effect was proportional to the course of infection, concentration dependent up to 100 μM, and achieved without an increase in nitrite levels of culture supernatants. Moreover, when the l-arginine metabolism of macrophages is diverted towards ornithine generation by interleukin 4–induced arginase I, parasite growth is promoted. This effect can be reversed by LOHA. Inhibition of NOS II by N
G-methyl-l-arginine (LNMMA) restores the killing obtained in the presence of interferon (IFN)-γ plus lipolysaccharide (LPS), whereas the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-3-oxide-1-oxyl (carboxy-PTIO) was without effect. However, exogenous l-ornithine almost completely inhibits parasite killing when added in the presence of LOHA to macrophages from NOS II–deficient mice or to BALB/c-infected cells activated with IFN-γ plus LPS. These results suggest that LOHA is an effector molecule involved in the control of Leishmania infection. In addition, macrophage arginase I induction by T helper cell type 2 cytokines could be a mechanism used by parasites to spread inside the host.
Leishmania spp. are intracellular protozoan parasites that invade and replicate within macrophages. In a previous report, we have demonstrated that the growth of intracellular amastigotes could be controlled by inhibition of arginase. This enzyme, induced in host cells by Th2 cytokines, synthesizes L-ornithine which can be used by parasites to generate polyamines and proliferate. In this study, we have designed experiments to better analyse the dependence of parasite proliferation on arginase induction in infected macrophages. Treatment of Leishmania major-infected BALB/c macrophages with interleukin (IL)-4, IL-10 or transforming growth factor-beta, which are all inducers of arginase I in murine macrophages, led to a proportional increase in the number of intracellular amastigotes. Moreover, parasite proliferation and arginase activity levels in macrophages from the susceptible BALB/c mice were significantly higher than those from infected C57BL/6 cells when treated with identical doses of these cytokines, indicating that a strong correlation exist between the permissibility of host cells to L. major infection and the induction of arginase I in macrophages. Specific inhibition of arginase by N(omega)-hydroxy-nor-L-arginine (nor-LOHA) reverted growth, while L-ornithine and putrescine promoted parasite proliferation, indicating that the parasite cell division depends critically on the level of L-ornithine available in the host. Therefore, arginase induction in the context of a Th2 predominant response might be a contributor to susceptibility in leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.