Activation with lipopolysaccharide induces macrophages to produce the enzymes arginase and nitric oxide (NO) synthase. Both enzymes use as a substrate the amino acid L-arginine, which can be either hydrolyzed by arginase to urea and ornithine or oxidized by NO synthase to NO and citrulline. NO is important in the bactericidal and cytotoxic activities of macrophages. An equivalent functional role of arginase and its products is not known. We tested the induction of arginase in bone marrow-derived macrophages by endogenous mediators that are known to induce NO synthase, such as interferon-gamma (IFN-gamma), or suppress the induction of this enzyme, such as interleukin (IL)-4, IL-10, and prostaglandin E2 (PGE2). We find that PGE2 and the TH2 cytokines IL-4 and IL-10 are potent inducers of arginase. In contrast, the TH1 cytokine IFN-gamma does not induce arginase. Simultaneous application of both types of mediators leads to reduced induction of both arginase and NO synthase. Exposure of macrophage cultures to inducers of NO synthase exhausts their ability to respond subsequently to inducers of arginase. Conversely, exposure of the cells to inducers of arginase exhausts their ability to respond subsequently to inducers of NO synthase. The results are consistent with a competition of both enzymes for their substrate, L-arginine, with a reciprocal inhibition in the induction of both enzymes, or a combination of both phenomena. The enzymes NO synthase and arginase appear to define two alternate functional states of macrophages, induced by TH1 and TH2 cytokines, respectively.
Interferon (IFN)-γ, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-γ mRNA transcripts, the combined stimulation of BMMΦ with both cytokines leads to the efficient production of IFN-γ protein. The macrophage-derived IFN-γ is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-γ but also a potent IFN-γ–producing cell.
An alanyl-alanyl-phenylalanyl-7-amino-4-methylcoumarin-hydrolyzing protease particle copurifying with 26S proteasomes was isolated and identified as tripeptidyl peptidase II (TPPII), a cytosolic subtilisin-like peptidase of unknown function. The particle is larger than the 26S proteasome and has a rod-shaped, dynamic supramolecular structure. TPPII exhibits enhanced activity in proteasome inhibitor-adapted cells and degrades polypeptides by exo- as well as predominantly trypsin-like endoproteolytic cleavage. TPPII may thus participate in extralysosomal polypeptide degradation and may in part account for nonproteasomal epitope generation as postulated for certain major histocompatibility complex class I alleles. In addition, TPPII may be able to substitute for some metabolic functions of the proteasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.