Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.
Insect parasitoids play a major role in terrestrial food webs as they are highly diverse, exploit a wide range of niches and are capable of affecting host population dynamics. Formidable difficulties are encountered when attempting to quantify host-parasitoid and parasitoid-parasitoid trophic links in diverse parasitoid communities. Here we present a DNA-based approach to effectively track trophic interactions within an aphid-parasitoid food web, targeting, for the first time, the whole community of parasitoids and hyperparasitods associated with a single host. Using highly specific and sensitive multiplex and singleplex polymerase chain reaction, endoparasitism in the grain aphid Sitobion avenae (F) by 11 parasitoid species was quantified. Out of 1061 aphids collected during 12 weeks in a wheat field, 18.9% were found to be parasitized. Parasitoids responded to the supply of aphids, with the proportion of aphids parasitized increasing monotonically with date, until the aphid population crashed. In addition to eight species of primary parasitoids, DNA from two hyperparasitoid species was detected within 4.1% of the screened aphids, with significant hyperparasitoid pressure on some parasitoid species. In 68.2% of the hyperparasitized aphids, identification of the primary parasitoid host was also possible, allowing us to track species-specific parasitoid-hyperparasitoid links. Nine combinations of primary parasitoids within a single host were found, but only 1.6% of all screened aphids were multiparasitized. The potential of this approach to parasitoid food web research is discussed.
Molecular approaches are increasingly being used to analyse host-parasitoid food webs as they overcome several hurdles inherent to conventional approaches. However, such studies have focused primarily on the detection and identification of aphids and their aphidiid primary parasitoids, largely ignoring primary parasitoid-hyperparasitoid interactions or limiting these to a few common species within a small geographical area. Furthermore, the detection of bacterial secondary endosymbionts has not been considered in such assays despite the fact that endosymbionts may alter aphid-parasitoid interactions, as they can confer protection against parasitoids. Here we present a novel two-step multiplex PCR (MP-PCR) protocol to assess cereal aphid-primary parasitoid-hyperparasitoid-endosymbiont interactions. The first step of the assay allows detection of parasitoid DNA at a general level (24 primary and 16 hyperparasitoid species) as well as the species-specific detection of endosymbionts (3 species) and cereal aphids (3 species). The second step of the MP-PCR assay targets seven primary and six hyperparasitoid species that commonly occur in Central Europe. Additional parasitoid species not covered by the second-step of the assay can be identified via sequencing 16S rRNA amplicons generated in the first step of the assay. The approach presented here provides an efficient, highly sensitive, and cost-effective (~consumable costs of 1.3 € per sample) tool for assessing cereal aphid-parasitoid-endosymbiont interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.