Purpose:We aim to identify Th1 and Th2 cell clusters in young subjects, including their clinical and metabolic characteristics and the Th1/Th2 balance. Patients and Methods: A total of 100 participants were included. The frequencies of Th1 and Th2 cells in peripheral blood were determined by flow cytometry. Serum C-reactive protein was measured using a turbidimetric assay, and insulin levels were quantified with an enzyme-linked immunosorbent assay. Circulating cytokine levels were analyzed using a multiplex system. Results: A cluster analysis was performed to determine the Th1/Th2 balance in a group of young people, and 3 clusters were formed with the following characteristics: 1) subjects with a higher prevalence of hyperglycemia (38%), dyslipidemia (38-75%), and insulin resistance (50%), as well as a higher percentage of Th1 cells and Th1/Th2 ratio, including elevated IFN-ɣ levels; 2) subjects with a lower prevalence of hyperglycemia (23%) and insulin resistance (15.4%), but a higher prevalence of dyslipidemia (8-85%) with a predominance of Th2 cells, and lower Th1/Th2 ratio; 3) subjects with a lower prevalence of hyperglycemia (6%), insulin resistance (41%), and dyslipidemia (10-63%), as well as a balance of Th1 and Th2 cells and lower Th1/Th2 ratio, including low IFN-ɣ levels. Positive correlations between Th1 cells with IFN-γ, IL-12, and IL-1β and between Th2 cells with IFN-γ, IL-2, and IL-4 were found (p < 0.05). A significant increase in Th1 cells was observed in the presence of hyperglycemia and high LDL-C levels, as well as increased Th2 cells in the absence of abdominal obesity and high blood pressure, including low HDL-C levels. The Th1/Th2 ratio was higher in the group with high cardiometabolic risk (p = 0.03). Conclusion: Th1/Th2 balance is related to metabolic abnormalities that may occur in young population, and thus the timely identification of different phenotypes may help predict an increased cardiometabolic risk.
Objective Few studies have investigated the relationships between high-sensitivity C-reactive protein (hs-CRP) concentration and conventional cardiometabolic markers in young adults. The aim of this study was to characterize the cardiometabolic profile of young adults who are at high cardiovascular risk, according to hs-CRP concentration. Methods A cross-sectional study was conducted in 300 young adults (18 to 30 years old) from southern Mexico (n = 150 normal-weight and n = 150 obese). Their circulating lipid and glucose concentrations were measured using colorimetric enzymatic assays, and their hs-CRP, ApoA, and ApoB concentrations were measured using turbidimetric assays. Results The most prevalent abnormalities in the participants with high cardiovascular risk, determined using an hs-CRP >28.57 nmol/L, were high waist circumference (85.7%), obesity (83.9%), high low-density lipoprotein-cholesterol (64.3%), low high-density lipoprotein-cholesterol (50%), Apo B in the highest tertile (39.3%), hypertriglyceridemia (35.7%), and high blood pressure (30.4%). In addition, there were strong associations between hs-CRP >28.57 nmol/L and obesity (odds ratio [OR] = 13.9), high waist circumference (OR = 8.0), hypertriglyceridemia (OR = 4.0), high blood pressure (OR = 3.4), hypercholesterolemia (OR = 2.8), and Apo B in the highest tertile (OR = 2.4). Conclusion The principal cardiometabolic alterations associated with high cardiovascular risk, determined using hs-CRP, are obesity, dyslipidemia, and high blood pressure in young adults.
Insulin is the hormone responsible for maintaining glucose homeostasis in the body, in addition to participating in lipid metabolism, protein synthesis, and the inhibition of gluconeogenesis. These functions are well characterized in the classic organ target cells that are responsible for general energy regulation: the liver, skeletal muscle, and adipose tissue. However, these actions are not restricted to these tissues because insulin has been shown to affect most cells in the body. This review describes the role of insulin in leukocyte signaling pathways, metabolism and functions, and how insulin resistance could affect this signaling and deteriorate leukocyte metabolism and function, in addition to showing evidence that suggests leukocytes may substantially contribute to the development of systemic insulin resistance.
We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.
Background Human adenovirus 36 (HAd36) infection has been associated with obesity. Experiments using 3T3-L1 adipocyte cultured cells and human adipose stem cells (hASCc) have shown that HAd36 stimulates the expression of genes implicated in cell differentiation and increased lipid accumulation. The presence of HAd36 in adipose tissue of overweight and obese women has also been confirmed. This study aims to analyze the presence of HAd36 DNA in the adipose tissue of women undergoing surgery for weight reduction and its relationship with obesity through changes in adipocyte morphology as well as the expression of C/EBPβ and HIF-1α. Methods Fifty-two subcutaneous adipose tissue biopsies were collected. The anthropometric parameters measured were weight, height, skin folds, body circumferences, and body fat percentage. Biochemical measures were performed for glucose, cholesterol, triglycerides, cholesterol HDL-c, and LDL-c. The presence of HAd36 DNA was performed by conventional PCR. Adipocyte morphology was analyzed in H&E-stained sections using ImageJ/Fiji software. The expression of genes C/EBPβ, HIF-1α and β-actin was determined using TaqMan probes. Results HAd36 DNA was detected in 31% of adipose tissue samples. The presence of viral DNA was not significantly associated with anthropometric, clinical, or metabolic measurements, or with changes in adipose tissue morphology. The levels of mRNA expression for C/EBPβ and HIF-1α did not show significant differences between positive and negative samples for HAd36 (p>0.05). Conclusion The presence of HAd36 DNA in adipose tissue was identified, but it was not related to morphological changes of adipocytes, or the expression of C/EBPβ and HIF-1α. Further studies are needed to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.