Highly effective electrocatalysts promoting CO 2 reduction reaction (CO 2 RR) is extremely desirable to produce value-added chemicals/fuels while addressing current environmental challenges. Herein, we develop a layer-stacked, bimetallic two-dimensional conjugated metalorganic framework (2D c-MOF) with copper-phthalocyanine as ligand (CuN 4) and zinc-bis (dihydroxy) complex (ZnO 4) as linkage (PcCu-O 8-Zn). The PcCu-O 8-Zn exhibits high CO selectivity of 88%, turnover frequency of 0.39 s −1 and long-term durability (>10 h), surpassing thus by far reported MOF-based electrocatalysts. The molar H 2 /CO ratio (1:7 to 4:1) can be tuned by varying metal centers and applied potential, making 2D c-MOFs highly relevant for syngas industry applications. The contrast experiments combined with operando spectroelectrochemistry and theoretical calculation unveil a synergistic catalytic mechanism; ZnO 4 complexes act as CO 2 RR catalytic sites while CuN 4 centers promote the protonation of adsorbed CO 2 during CO 2 RR. This work offers a strategy on developing bimetallic MOF electrocatalysts for synergistically catalyzing CO 2 RR toward syngas synthesis.
Layered two-dimensional (2D) conjugated metalorganic frameworks (MOFs) represent af amily of rising electrocatalysts for the oxygen reduction reaction (ORR), due to the controllable architectures,excellent electrical conductivity,a nd highly exposed well-defined molecular active sites. Herein, we report ac opper phthalocyanine based 2D conjugated MOF with square-planar cobalt bis(dihydroxy) complexes (Co-O 4 )a sl inkages (PcCu-O 8 -Co) and layer-stacked structures prepared via solvothermal synthesis.P cCu-O 8 -Co 2D MOF mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity (E 1/2 = 0.83 Vv s. RHE, n = 3.93, and j L = 5.3 mA cm À2 )i na lkaline media, which is the record value among the reported intrinsic MOF electrocatalysts. Supported by in situ Raman spectro-electrochemistry and theoretical modeling as well as contrast catalytic tests,w e identified the cobalt nodes as ORR active sites.F urthermore, when employed as ac athode electrocatalyst for zinc-air batteries,P cCu-O 8 -Co delivers am aximum power density of 94 mW cm À2 ,o utperforming the state-of-the-art Pt/C electrocatalysts (78.3 mW cm À2 ).Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∼ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∼ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices.
Rates of homogeneous nucleation of H2O droplets in a temperature range from 236.37 to 237.91 K and of D2O droplets from 241.34 to 242.33 K were measured. The single microdroplets consisted of pure H2O or D2O and were levitated in an electrodynamic balance. In comparison to H2O, D2O shows a stronger tendency to nucleate. Over the investigated temperature interval, D2O droplets need to be supercooled less by 1.1 K compared to H2O droplets in order to arrive at the same nucleation rate. This is in good agreement with the higher degree of intermolecular association in liquid D2O, a fact which has been well established previously both from theory and experimental studies.
Human sulfite oxidase (hSO) was immobilised on SAM-coated silver electrodes under preservation of the native heme pocket structure of the cytochrome b5 (Cyt b5) domain and the functionality of the enzyme. The redox properties and catalytic activity of the entire enzyme were studied by surface enhanced resonance Raman (SERR) spectroscopy and cyclic voltammetry (CV) and compared to the isolated heme domain when possible. It is shown that heterogeneous electron transfer and catalytic activity of hSO sensitively depend on the local environment of the enzyme. Increasing the ionic strength of the buffer solution leads to an increase of the heterogeneous electron transfer rate from 17 s(-1) to 440 s(-1) for hSO as determined by SERR spectroscopy. CV measurements demonstrate an increase of the apparent turnover rate for the immobilised hSO from 0.85 s(-1) in 100 mM buffer to 5.26 s(-1) in 750 mM buffer. We suggest that both effects originate from the increased mobility of the surface-bound enzyme with increasing ionic strength. In agreement with surface potential calculations we propose that at high ionic strength the enzyme is immobilised via the dimerisation domain to the SAM surface. The flexible loop region connecting the Moco and the Cyt b5 domain allows alternating contact with the Moco interaction site and the SAM surface, thereby promoting the sequential intramolecular and heterogeneous electron transfer from Moco via Cyt b5 to the electrode. At lower ionic strength, the contact time of the Cyt b5 domain with the SAM surface is longer, corresponding to a slower overall electron transfer process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.