Eye-tracking experiments rely heavily on good data quality of eye-trackers. Unfortunately, it is often the case that only the spatial accuracy and precision values are available from the manufacturers. These two values alone are not sufficient to serve as a benchmark for an eye-tracker: Eye-tracking quality deteriorates during an experimental session due to head movements, changing illumination or calibration decay. Additionally, different experimental paradigms require the analysis of different types of eye movements; for instance, smooth pursuit movements, blinks or microsaccades, which themselves cannot readily be evaluated by using spatial accuracy or precision alone. To obtain a more comprehensive description of properties, we developed an extensive eye-tracking test battery. In 10 different tasks, we evaluated eye-tracking related measures such as: the decay of accuracy, fixation durations, pupil dilation, smooth pursuit movement, microsaccade classification, blink classification, or the influence of head motion. For some measures, true theoretical values exist. For others, a relative comparison to a reference eye-tracker is needed. Therefore, we collected our gaze data simultaneously from a remote EyeLink 1000 eye-tracker as the reference and compared it with the mobile Pupil Labs glasses. As expected, the average spatial accuracy of 0.57° for the EyeLink 1000 eye-tracker was better than the 0.82° for the Pupil Labs glasses (N = 15). Furthermore, we classified less fixations and shorter saccade durations for the Pupil Labs glasses. Similarly, we found fewer microsaccades using the Pupil Labs glasses. The accuracy over time decayed only slightly for the EyeLink 1000, but strongly for the Pupil Labs glasses. Finally, we observed that the measured pupil diameters differed between eye-trackers on the individual subject level but not on the group level. To conclude, our eye-tracking test battery offers 10 tasks that allow us to benchmark the many parameters of interest in stereotypical eye-tracking situations and addresses a common source of confounds in measurement errors (e.g., yaw and roll head movements). All recorded eye-tracking data (including Pupil Labs’ eye videos), the stimulus code for the test battery, and the modular analysis pipeline are freely available (https://github.com/behinger/etcomp).
In many situations encountered in our daily lives where we have several options to choose from, we need to balance the amount of planning into the future with the number of alternatives we want to consider to achieve our long-term goals. A popular way to study these planning problems in controlled environments is maze-solving tasks, since they can be precisely defined and controlled in terms of their topology. In our study, participants solved mazes that differed systematically in topological properties regulating the number of alternatives and depth of paths. Replicating previous results, we show the influence of these spatial features on performance and stopping times. Longer and more branched solution paths lead to more planning effort and longer solution times. Additionally, we measured subjects’ eye movements to investigate their planning horizon. Our results suggest that people decrease their planning depth with increasing number of alternatives.
Applying automated reasoning tools for decision support and analysis in law has the potential to make court decisions more transparent and objective. Since there is often uncertainty about the accuracy and relevance of evidence, non-classical reasoning approaches are required. Here, we investigate probabilistic epistemic argumentation as a tool for automated reasoning about legal cases. We introduce a general scheme to model legal cases as probabilistic epistemic argumentation problems, explain how evidence can be modeled and sketch how explanations for legal decisions can be generated automatically. Our framework is easily interpretable, can deal with cyclic structures and imprecise probabilities and guarantees polynomial-time probabilistic reasoning in the worstcase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.