The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.
Light metal borohydrides are considered as promising materials for solid state hydrogen storage. Because of the high hydrogen content of 11.5 wt % and the rather low dehydrogenation enthalpy of 32 kJ mol−1H2, Ca(BH4)2 is considered to be one of the most interesting compounds in this class of materials. In the present work, the effect of selected TM-fluoride (TM = transition metal) additives on the reversible formation of Ca(BH4)2 was investigated by means of thermovolumetric, calorimetric, Fourier transform infrared spectroscopy, and ex situ, and in situ synchrotron radiation powder X-ray diffraction (SR-PXD) measurements. Furthermore, selected desorbed samples were analyzed by 11B{1H} solid state magic angle spinning nuclear magnetic resonance (MAS NMR). Under the conditions used in this study (145 bar H2 pressure and 350 °C), TiF4 and NbF5 were the only additives causing partial reversibility. In these two cases, 11B{1H} MAS NMR analyses detected CaB6 and likely CaB12H12 in the dehydrogenation products. Elemental boron was found in the decomposition products of Ca(BH4)2 samples with VF4, TiF3, and VF3. The results indicate an important role of CaB6 for the reversible formation of Ca(BH4)2.
The combination of Ca(BH4)2 and MgH2 materials results in a composite with remarkable hydrogen storage properties. However, full reversibility upon the (re)hydrogenation reaction has not yet been achieved. The poor reversibility is shown to be linked to the formation of stable intermediate phases or side products upon decomposition. In this work, we show, for the first time, the clear experimental evidence of CaB12H12 among the decomposition products of a Ca(BH4)2 + MgH2 composite. A combination of 11B Magic Angle Spinning–Nuclear Magnetic Resonance (11B{1H} MAS NMR), ex situ X-ray diffraction (XRD) and Rietveld analysis are presented. An assessment of the (de)hydrogenation and (re)hydrogenation reactions of Ca(BH4)2 + MgH2 composite is reported. The experimental results provided in this work highlight the reasons for the limited reversibility observed in the Ca(BH4)2 + MgH2 composite upon (re)hydrogenation.
The synthesis of a novel alkali-metal aluminium borohydride NaAl(BH4)xCl4-x from NaBH4 and AlCl3 using a solid state metathesis reaction is described. Structure determination was carried out using synchrotron powder diffraction data and vibrational spectroscopy. An orthorhombic structure (space group Pmn2(1)) is formed which contains Na+ cations and complex [Al(BH4,Cl)4]- anions. Due to the high chlorine content (1 < or = x < or = 1.43) the hydrogen density of the borohydride is only between 2.3 and 3.5 wt.% H2 in contrast to the expected 14.6 wt.% for chlorine free NaAl(BH4)4. The decomposition of NaAl(BH4)xCl4-x is observed in the target range for desorption at about 90 degrees C by differential scanning calorimetry (DSC), in situ Raman spectroscopy and synchrotron powder X-ray diffraction. Thermogravimetric analysis (TG) shows extensive mass loss indicating the loss of H2 and B2H6 at about 90 degrees C followed by extensive weight loss in the form of chloride evaporation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.