The chemical recycling of hemp fabric into high-tenacity man-made cellulose fibers was demonstrated. The fabric was laundered 25 and 50 times to mimic the wear cycles of post-consumer textile waste. Despite the launderings, the molar mass of the material was still too high for recycling via dry-jet-wet spinning. Thus, the fabrics were treated with an aqueous sulfuric acid solution to adjust the intrinsic viscosity to the targeted level of 400–500 ml/g. The acid hydrolyzed sample was dissolved in 1,5-diazabicyclo[4.3.0]non-5-enium acetate and man-made cellulose fibers were regenerated by dry-jet-wet spinning. The properties of hemp and regenerated fibers were determined by tensile testing, birefringence measurements, and X-ray diffraction. Regenerated fibers were spun into yarn and knitted into a fabric. The tensile properties of the yarn and the abrasion and pilling resistance of the fabric were determined. Regenerated fibers showed a higher modulus of toughness (55.9 MPa) compared with hemp fibers (28.7 MPa). The fineness and staple length uniformity of regenerated fibers resulted in a high yarn structure evenness, a yarn tenacity of 28.1 cN/tex, and an elongation at break of 7.5%. Due to the even fabric structure, the fabric from regenerated fibers showed higher abrasion resistance than the hemp fabric.
The hydrolysis kinetics of 7-methyl-1,5,7triazabicyclo[4.4.0]dec-5-enium acetate [mTBDH][OAc] was investigated in a comprehensive study by the utilization of the well-known Schlenk technique to achieve a better understanding of its stability for dry-jet wet spinning applications (e.g., Ioncell) and due to the course of operation for recovery methods like fractional distillation. Decomposition behavior as a function of temperature, time, acid−base stoichiometry, and water content was extensively analyzed and characterized by nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis (CE), and thermogravimetric analysis (TGA). Furthermore, kinetic models were formulated for the prediction of the stability and the results were compared with the closely related amidine-based analogues 1,5diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] and 1,8-diazabicyclo[5.4.0]undec-7-enium acetate [DBUH][OAc].
A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.
This study focuses on the investigation of the extent of the γ-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of a 50 wt% GVL solution to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2 × 10–5 wt% to 6 wt%) at elevated temperatures (150–180 °C) and reaction times between 30 and 180 min caused the formation of 4 mol% 4-HVA. However, with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at a constant time (30 min) and temperature (180 °C) with the variation of the NaOH concentration (0.2 × 10–6 wt% to 7 wt%). The addition of less than 0.2 wt% of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The degree of decomposition after treatment was determined by NMR analysis. To verify the GVL stability under practical conditions, Betula pendula sawdust was fractionated in 50 wt% GVL with and without the addition of H2SO4 or NaOH at 180 °C and a treatment time of 120 min. The spent liquor was analyzed and a 4-HVA content of 5.6 mol% in a high acidic (20 kg H2SO4/t wood) and 6.0 mol% in an alkaline (192 kg NaOH/t wood) environment have been determined.
Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ionexchange materials, or substrates for biomineralization among others. This is largely due to strenuous extraction methods prone to a combination of poor reproducibility, low degrees of substitution, disappointing yields, and impractical reaction sequences. Here, we demonstrate an improved methodology relying on the modification routines for phosphorylated cellulose nanofibers and hydrolysis by gaseous HCl to isolate CNCs. This allows us to overcome the aforementioned shortcomings and to reliably and reproducibly extract phosphorylated CNCs with exceptionally high surface charge (∼2000 mmol/kg) in a straightforward routine that minimizes water consumption and maximizes yields. The CNCs were characterized by NMR, ζpotential, conductometric titration, thermogravimetry, elemental analysis, wide-angle X-ray scattering, transmission electron microscopy, and atomic force microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.