This study focuses on the investigation of the extent of the γ-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of a 50 wt% GVL solution to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2 × 10–5 wt% to 6 wt%) at elevated temperatures (150–180 °C) and reaction times between 30 and 180 min caused the formation of 4 mol% 4-HVA. However, with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at a constant time (30 min) and temperature (180 °C) with the variation of the NaOH concentration (0.2 × 10–6 wt% to 7 wt%). The addition of less than 0.2 wt% of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The degree of decomposition after treatment was determined by NMR analysis. To verify the GVL stability under practical conditions, Betula pendula sawdust was fractionated in 50 wt% GVL with and without the addition of H2SO4 or NaOH at 180 °C and a treatment time of 120 min. The spent liquor was analyzed and a 4-HVA content of 5.6 mol% in a high acidic (20 kg H2SO4/t wood) and 6.0 mol% in an alkaline (192 kg NaOH/t wood) environment have been determined.
Acid-catalyzed organosolv GVL pulping can yield high-purity dissolving pulp from birch with qualities comparable to commercial acid sulfite dissolving pulp.
This study investigates the extent of the g-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of pure 50 wt% GVL to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2×10-5 wt% to 6 wt%) at elevated temperatures (150 – 180°C) and reaction times between 30-180 min caused the formation of 4 mol% 4-HVA but with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at constant time (30 min) and temperature (180 °C) with variation of the NaOH concentration (0.2×10-6 wt% to 7 wt%). The addition of less than 0.2 wt % of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The stability after synthesis was determined by NMR analysis. To verify the GVL stability results obtained under practical conditions, Betula pendula sawdust was fractionated in 50% GVL with and without addition of H2SO4 or NaOH at 180°C and 120 min, and spent liquor was analyzed. The spent liquor contained 5.6 mol% and 6.0 mol% of 4-HVA in a highly acidic (20 kg H2SO4/t wood) and alkaline (192 kg NaOH/ t wood) environment, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.