Large amounts of the greenhouse gas methane are released from the seabed to the water column 1 where it may be consumed by aerobic methanotrophic bacteria 2. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics 3-7 , but little is known about the effects of ocean currents. Here we show that cold bottom water at methane seeps west off Svalbard, containing a large number of aerobic methanotrophs, was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current, constitutes an oceanographic switch severely reducing methanotrophic activity in the water column. Strong and fluctuating currents are widespread oceanographic features common at many methane seep systems and are thus likely to globally affect methane oxidation in the ocean water column. Large amounts of methane are stored in the subsurface of continental margins as solid gas hydrates, gaseous reservoirs or dissolved in pore water 8. At cold seeps, various physical, chemical, and geological processes force subsurface methane to ascend along pathways of structural weakness to the sea floor where a portion of this methane is utilised by anaerobic and aerobic methanotrophic microbes 1,9. On a global scale, about 0.02 Gt yr-1 (3-3.5% of the atmospheric budget 10) of methane bypasses the benthic filter system and is liberated to the ocean water column 1 where some of it is oxidised aerobically (aerobic oxidation of methane-MOx) (ref 2), or less commonly where the water column is anoxic, anaerobically (anaerobic oxidation of methane-AOM) (refs 2, 11). MOx is performed by methanotrophic bacteria (MOB) typically belonging to the Gamma-(type I) or Alphaproteobacteria (type II) (refs 12, 13): CH 4 + 2 O 2 → CO 2 + 2 H 2 O Water column MOx is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. The water column MOx filter could become more
Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The gas discharge occurs in water depths at and shallower than the upper edge of the gas hydrate stability zone and generates a dissolved methane plume that is hundreds of kilometer in length. Data collected in the summer of 2015 revealed that 0.02-7.7% of the dissolved methane was aerobically oxidized by microbes and a minor fraction (0.07%) was transferred to the atmosphere during periods of low wind speeds. Most flares were detected in the vicinity of the Hornsund Fracture Zone, leading us to postulate that the gas ascends along this fracture zone. The methane discharges on bathymetric highs characterized by sonic hard grounds, whereas glaciomarine and Holocene sediments in the troughs apparently limit seepage. The large scale seepage reported here is not caused by anthropogenic warming.Methane is, after water vapor and CO 2 , the most abundant greenhouse gas on Earth. When averaged over a 100 yr timescale, the warming effect of methane per unit mass is 28 times higher than that of CO 2 1 . Methane is produced in oceanic sediments either by methanogens at temperatures typically below ~80 °C, or through the breakdown of organic molecules at higher temperatures 2,3 . Buoyancy and pressure gradients can drive gas advection to shallower sediments where methane can be consumed via anaerobic oxidation of methane (AOM) 4 at the sulfate-methane transition zone and aerobic methane oxidation at the sediment surface 5 . Methane can also be sequestered within a cage of water molecules, in a gas hydrate structure, stable under the low temperature and high pressure conditions that define the gas hydrate stability zone 6 . If the upward methane flux is not fully exhausted by these processes, methane is emitted to the ocean either dissolved in the venting fluids or, in case of over-saturation, as gas bubbles 7 . As the bubbles ascend through the water column, a fraction of the methane gas dissolves 8 , generating patches of high methane concentration 9 . When the gas discharge is persistent and vigorous, it leads to the formation of large dissolved methane plumes. The dissolved methane is diluted by mixing with the surrounding ocean water and it is further oxidized by aerobic methanotrophs. Only in cases where dissolved methane reaches the surface-mixed layer in concentrations above saturation, can it be transferred to the atmosphere via sea-air gas exchange 10 . At present, the oceanic methane source to the atmosphere is very small (2-10%) 11 , as it is limited to emissions from vigorous and shallow seeps (<100 m) 1,7,8 . There is, however, an ongoing controversy regarding the methane discharge from sediments during warming events througho...
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.