As decisions in cardiology increasingly rely on noninvasive methods, fast and precise image processing tools have become a crucial component of the analysis workflow. To the best of our knowledge, we propose the first automatic system for patient-specific modeling and quantification of the left heart valves, which operates on cardiac computed tomography (CT) and transesophageal echocardiogram (TEE) data. Robust algorithms, based on recent advances in discriminative learning, are used to estimate patient-specific parameters from sequences of volumes covering an entire cardiac cycle. A novel physiological model of the aortic and mitral valves is introduced, which captures complex morphologic, dynamic, and pathologic variations. This holistic representation is hierarchically defined on three abstraction levels: global location and rigid motion model, nonrigid landmark motion model, and comprehensive aortic-mitral model. First we compute the rough location and cardiac motion applying marginal space learning. The rapid and complex motion of the valves, represented by anatomical landmarks, is estimated using a novel trajectory spectrum learning algorithm. The obtained landmark model guides the fitting of the full physiological valve model, which is locally refined through learned boundary detectors. Measurements efficiently computed from the aortic-mitral representation support an effective morphological and functional clinical evaluation. Extensive experiments on a heterogeneous data set, cumulated to 1516 TEE volumes from 65 4-D TEE sequences and 690 cardiac CT volumes from 69 4-D CT sequences, demonstrated a speed of 4.8 seconds per volume and average accuracy of 1.45 mm with respect to expert defined ground-truth. Additional clinical validations prove the quantification precision to be in the range of inter-user variability. To the best of our knowledge this is the first time a patient-specific model of the aortic and mitral valves is automatically estimated from volumetric sequences.
Cardiac remodelling plays a crucial role in heart diseases. Analyzing how the heart grows and remodels over time can provide precious insights into pathological mechanisms, eventually resulting in quantitative metrics for disease evaluation and therapy planning. This study aims to quantify the regional impacts of valve regurgitation and heart growth upon the end-diastolic right ventricle (RV) in patients with tetralogy of Fallot, a severe congenital heart defect. The ultimate goal is to determine, among clinical variables, predictors for the RV shape from which a statistical model that predicts RV remodelling is built. Our approach relies on a forward model based on currents and a diffeomorphic surface registration algorithm to estimate an unbiased template. Local effects of RV regurgitation upon the RV shape were assessed with Principal Component Analysis (PCA) and cross-sectional multivariate design. A generative 3-D model of RV growth was then estimated using partial least squares (PLS) and canonical correlation analysis (CCA). Applied on a retrospective population of 49 patients, cross-effects between growth and pathology could be identified. Qualitatively, the statistical findings were found realistic by cardiologists. 10-fold cross-validation demonstrated a promising generalization and stability of the growth model. Compared to PCA regression, PLS was more compact, more precise and provided better predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.