Coral reefs are highly endangered ecosystems. The identification and quantification of potential stress factors are essential to protect them. UV filters from sunscreens that are introduced to coral reef areas are considered as one of these stressors and their impact on corals needs to be further investigated. Even though UV filters are functionally similar, their structural features are very diverse. Their impact on limnic organisms have also been shown to be highly variable ranging from no or low to high toxicity. It is therefore to be expected that their effect on corals also differs significantly and that each compound has to be evaluated individually. The demand for conclusive benchmarks and guidelines from policy makers and the public over the past years shows the necessity for an objective literature review on the effects of various UV filters on scleractinian corals. Here, we review the present literature, summarize the data on the different UV filters and discuss the different approaches, advantages and limitations of the studies. However, the methods used in the latter studies vary greatly. They differ in many aspects such as species and life stage used, field and laboratory approaches, with exposure times ranging from hours to weeks. Some studies include analytics and measure the actual test concentration, others only provide nominal concentrations. The lack of standardized methods renders comparisons between studies futile. Additionally, most UV filters have only been investigated in a single or a few studies of different quality. Reliable thresholds are therefore impossible to draw on the basis of currently available studies. Nevertheless, certain UV filters repeatedly showed comparable toxicity in both freshwater and marine species tested. Yet, existing differences in results from coral tests emphasize the need for a standardized testing method comparable to those established for other aquatic organisms in order to allow for a more conclusive assessment. In this review, we describe what a scientifically sound testing proposal should include in order to obtain reliable and reproducible data, which ultimately should result in an internationally organized standardized ring test trial. Such standardized toxicity tests would enable validation of coral toxicity data related to UV filters, but also testing of other types of compounds that are known to be introduced and effect coral reefs, thus helping to identify significant stressors and enabling objective policy decisions.
Background Tropical coral reefs have been recognized for their significant ecological and economical value. However, increasing anthropogenic disturbances have led to progressively declining coral reef ecosystems on a global scale. More recently, several studies implicated UV filters used in sunscreen products to negatively affect corals and possibly contribute to regional trends in coral decline. Following a public debate, bans were implemented on several organic UV filters and sunscreen products in different locations including Hawaii, the U.S. Virgin Islands and Palau. This included banning the widely used oxybenzone and octinoxate, while promoting the use of inorganic filters such as zinc oxide even although their toxicity towards aquatic organisms had been documented previously. The bans of organic UV filters were based on preliminary scientific studies that showed several weaknesses as there is to this point no standardized testing scheme for scleractinian corals. Despite the lack of sound scientific proof, the latter controversial bans have already resulted in the emergence of a new sunscreen market for products claimed to be ‘reef safe’ (or similar). Thus, a market analysis of ‘reef safe’ sunscreen products was conducted to assess relevant environmental safety aspects of approved UV filters, especially for coral reefs. Further, a scientifically sound decision-making process in a regulatory context is proposed. Results Our market analysis revealed that about 80% of surveyed sunscreens contained inorganic UV filters and that there is a variety of unregulated claims being used in the marketing of ‘reef safe’ products with ‘reef friendly’ being the most frequently used term. Predominantly, four organic UV filters are used in ‘reef safe’ sunscreens in the absence of the banned filters oxybenzone and octinoxate. Analysis of safe threshold concentrations for marine water retrieved from existing REACH registration dossiers could currently also safeguard corals. Conclusion There is a substantial discrepancy of treatments of organic versus inorganic UV filters in politics as well as in the ‘reef safe’ sunscreen market, which to this point is not scientifically justified. Thus, a risk-based approach with equal consideration of organic and inorganic UV filters is recommended for future regulatory measures as well as a clear definition and regulation of the ‘reef safe’ terminology.
The pollution of the marine environment with microplastics is pervasive. However, microplastic concentrations in the seawater are lower than the number of particles entering the oceans, suggesting that plastic particles accumulate in environmental sinks.Yet, the exact long-term sinks related to the "missing plastic" phenomenon are barely
Coral reefs have been declining globally at a historically unprecedented rate. Ultraviolet (UV) filters used in sunscreens may contribute to this decline at local scales, which has already led to bans on various organic UV filters in some regions. However, the underlying studies for these bans demonstrated significant flaws in the experimental design due to a lack of validated and standardized testing methods for corals. This study aimed to investigate options for the development of a standard acute toxicity test for the larval stage of scleractinian corals. Planula larvae of two brooding (Leptastrea purpurea and Tubastraea faulkneri) and two spawning (Acropora digitifera and A. millepora) species were exposed to the organic UV filter benzophenone-3 (BP3) for 48 h under static conditions. We observed interspecific variations in toxicity, with A. digitifera being the most sensitive (LC50 = 0.75 µg L–1) and T. faulkneri the least sensitive (LC50 = 2951.24 µg L–1) species. Inhibition of settlement was found to be a useful endpoint leading to an EC50 of 1.84 µg L–1 in L. purpurea larvae. Although the analytical challenges of measuring lipophilic substances in small volume test setups remain, the here applied test design and selected endpoints are suitable for further validation and subsequent standardization.
Ultraviolet (UV) filters used in sunscreens are among the anthropogenic substances that may enter the marine environment by both indirect (via wastewater) and direct pathways (leisure activities). Owing to the recent global decline in coral population, the impact of those UV filters on the coral health is currently under increased investigation. First results from scientists suggest that some of the filters may be toxic to various coral life stages, but an initial cross comparison with existing data from other freshwater organisms does not indicate that corals are specifically more susceptible to UV filters than other standard species. In fact, the available data leading to this conclusion is still vague and based on toxicity and bioaccumulation tests with corals, which are both still at the research stage. To facilitate a proper hazard assessment, robust experimental procedures for coral ecotoxicological studies are considered mandatory. In other words, additional steps should be taken to standardize and validate such new test systems to generate reliable results, which then can be used in regulatory decision making. Furthermore, to facilitate a more detailed and site‐specific environmental risk assessment in the marine area, an application‐based exposure scenario must be developed. Until these data and tools become available, environmental hazard and risk assessments may be carried out using existing data from freshwater organisms and existing tonnage‐based exposure scenarios as a potential surrogate. Integr Environ Assess Manag 2021;17:926–939. © 2021 SETAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.