Coral reefs are highly endangered ecosystems. The identification and quantification of potential stress factors are essential to protect them. UV filters from sunscreens that are introduced to coral reef areas are considered as one of these stressors and their impact on corals needs to be further investigated. Even though UV filters are functionally similar, their structural features are very diverse. Their impact on limnic organisms have also been shown to be highly variable ranging from no or low to high toxicity. It is therefore to be expected that their effect on corals also differs significantly and that each compound has to be evaluated individually. The demand for conclusive benchmarks and guidelines from policy makers and the public over the past years shows the necessity for an objective literature review on the effects of various UV filters on scleractinian corals. Here, we review the present literature, summarize the data on the different UV filters and discuss the different approaches, advantages and limitations of the studies. However, the methods used in the latter studies vary greatly. They differ in many aspects such as species and life stage used, field and laboratory approaches, with exposure times ranging from hours to weeks. Some studies include analytics and measure the actual test concentration, others only provide nominal concentrations. The lack of standardized methods renders comparisons between studies futile. Additionally, most UV filters have only been investigated in a single or a few studies of different quality. Reliable thresholds are therefore impossible to draw on the basis of currently available studies. Nevertheless, certain UV filters repeatedly showed comparable toxicity in both freshwater and marine species tested. Yet, existing differences in results from coral tests emphasize the need for a standardized testing method comparable to those established for other aquatic organisms in order to allow for a more conclusive assessment. In this review, we describe what a scientifically sound testing proposal should include in order to obtain reliable and reproducible data, which ultimately should result in an internationally organized standardized ring test trial. Such standardized toxicity tests would enable validation of coral toxicity data related to UV filters, but also testing of other types of compounds that are known to be introduced and effect coral reefs, thus helping to identify significant stressors and enabling objective policy decisions.
Background Tropical coral reefs have been recognized for their significant ecological and economical value. However, increasing anthropogenic disturbances have led to progressively declining coral reef ecosystems on a global scale. More recently, several studies implicated UV filters used in sunscreen products to negatively affect corals and possibly contribute to regional trends in coral decline. Following a public debate, bans were implemented on several organic UV filters and sunscreen products in different locations including Hawaii, the U.S. Virgin Islands and Palau. This included banning the widely used oxybenzone and octinoxate, while promoting the use of inorganic filters such as zinc oxide even although their toxicity towards aquatic organisms had been documented previously. The bans of organic UV filters were based on preliminary scientific studies that showed several weaknesses as there is to this point no standardized testing scheme for scleractinian corals. Despite the lack of sound scientific proof, the latter controversial bans have already resulted in the emergence of a new sunscreen market for products claimed to be ‘reef safe’ (or similar). Thus, a market analysis of ‘reef safe’ sunscreen products was conducted to assess relevant environmental safety aspects of approved UV filters, especially for coral reefs. Further, a scientifically sound decision-making process in a regulatory context is proposed. Results Our market analysis revealed that about 80% of surveyed sunscreens contained inorganic UV filters and that there is a variety of unregulated claims being used in the marketing of ‘reef safe’ products with ‘reef friendly’ being the most frequently used term. Predominantly, four organic UV filters are used in ‘reef safe’ sunscreens in the absence of the banned filters oxybenzone and octinoxate. Analysis of safe threshold concentrations for marine water retrieved from existing REACH registration dossiers could currently also safeguard corals. Conclusion There is a substantial discrepancy of treatments of organic versus inorganic UV filters in politics as well as in the ‘reef safe’ sunscreen market, which to this point is not scientifically justified. Thus, a risk-based approach with equal consideration of organic and inorganic UV filters is recommended for future regulatory measures as well as a clear definition and regulation of the ‘reef safe’ terminology.
Objective Sunscreens play a major role in the EU sun protection strategy in order to prevent humans from UV light‐induced skin damage. In recent years, the demand for high‐quality sunscreen products including aspects of broad range and photostability of the UV protection, showing good spreadability onto human skin and excellent sensorial properties during and after application has increased. Environmental aspects are considered. Sunscreens are complex compositions, with UV filters being the key element in the formulations reaching up to about 30% in content in the final product. Some of these ingredients, however, may be regarded as hazardous for the aquatic environment. Nevertheless, the aquatic ecosystem represents only a single environmental compartment, which may be impacted by UV filters. Therefore, the EcoSun Pass (ESP) tool was developed in order to assess the overall environmental impact of UV filters in combination with its efficacy (Sun Protection Factor, SPF and UVA Protection Factor, UVA‐PF). Methods For that purpose, at first 24 of the EU‐approved UV filters for sunscreen applications were evaluated for their environmental hazard profiles. Nine example UV filter compositions representing both SPF 30 and 50 were evaluated for ecofriendliness using the ESP tool. Results The results revealed that two out of four SPF 30 compositions are considered as ecofriendly. Likewise, from the SPF 50 two out of five did meet the criteria for ecofriendliness. Furthermore, the results showed that most ecofriendly example formulations have also the lowest overall UV filter content in the product, based on the use of highly innovative and least hazardous UV filters. Conclusion These results demonstrate that the tool is applicable to various formulations being present on the market and thus allows for a selection of most ecofriendly and efficient UV filters to be used in sunscreens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.