As microlithography moves to smaller critical dimensions, structures on reticles reach feature sizes comparable to the operating wavelength. Furthermore, with increasing NA the angle of incidence of light illuminating the mask steadily increases. In particular for immersion lithography this will have severe consequences on the printing behavior of reticles. Polarization effects arise which have an impact on, among other things, the contrast of the printed image. Angular effects have to be considered when aggressive off-axis illumination schemes are used. Whereas numerous articles have been published on those effects and the underlying theory seems to be understood, there is a strong need for experimental verification of properties of real masks at the actinic wavelength. This paper presents measurements of polarization effects on different mask blank types produced at Schott Lithotec including chrome and alternative absorber binary mask blanks, as well as phase shift mask blanks. Thickness and optical dispersion of all layers were determined using grazing incidence x-ray reflectometry (GIXR) and variable angle spectroscopic ellipsometry (VASE). The set of mask blanks was patterned using a special design developed at the Advanced Mask Technology Center (AMTC) to allow measurements at different line width and pitch sizes. VUV Ellipsometry was then used to measure the properties of the structured materials, in particular the intensities in the 0 th and 1 st diffraction order for both polarization directions and varying angle of incidence. The degree of polarization of respective mask types is evaluated for dense lines with varying pitches and duty cycles. The results obtained experimentally are compared with simulations based on rigorous coupled wave analysis (RCWA).
In the frame of the European Medea+ 2T302 MUSCLE project, an extensive mask carriers benchmark was carried out in order to evaluate whether some containers answer to the 65nm technology needs. Ten different containers, currently used or expected in the future all along the mask supply chain (blank, maskhouse and fab carriers) were selected at different steps of their life cycle (new, aged, aged&cleaned). The most critical parameters identified for analysis versus future technologies were: automation, particle contamination, chemical contamination (organic outgassing, ionic contamination), cleanability, ESD, airtightness and purgeability. Furthermore, experimental protocols corresponding to suitable methods were then developed and implemented to test each criterion. The benchmark results are presented giving a "state of the art" of mask carriers currently available and allowing a gap analysis for the tested parameters related to future needs. This approach is detailed through the particular case of carrier contamination measurements. Finally, this benchmark / gap analysis leads to propose advisable mask carrier specifications (and the test protocols associated) on various key parameters which can also be taken as guidelines for a standardization perspective for the 65nm technology. This also indicates that none of tested carriers fulfills all the specifications proposed.
Traditionally, definition of mask specifications is done completely by the mask user, while characterization of the mask relative to the specifications is done completely by the mask maker. As the challenges of low-k 1 imaging continue to grow in scope of designs and in absolute complexity, the inevitable partnership between wafer lithographers and mask makers has strengthened as well. This is reflected in the jointly owned mask facilities and device manufacturers' continued maintenance of fully captive mask shops which foster the closer mask-litho relationships. However, while some device manufacturers have leveraged this to optimize mask specifications before the mask is built and, therefore, improve mask yield and cost, the opportunity for post-fabrication partnering on mask characterization is more apparent and compelling. The Advanced Mask Technology Center (AMTC) has been investigating the concept of assessing how a mask images, rather than the mask's physical attributes, as a technically superior and lower-cost method to characterize a mask. The idea of printing a mask under its intended imaging conditions, then characterizing the imaged wafer as a surrogate for traditional mask inspections and measurements represents the ultimate method to characterize a mask's performance, which is most meaningful to the user. Surrogate wafer print (SWaP) is already done as part of leading-edge wafer fab mask qualification to validate defect and dimensional performance. In the past, the prospect of executing this concept has generally been summarily discarded as technically untenable and logistically intractable. The AMTC published a paper at BACUS 2007 successfully demonstrating the performance of SWaP for the characterization of defects as an alternative to traditional mask inspection [1]. It showed that this concept is not only feasible, but, in some cases, desirable. This paper expands on last year's work at AMTC to assess the full implementation of SWaP as an enhancement to mask characterization quality including defectivity, dimensional control, pattern fidelity, and in-plane distortion. We present a thorough analysis of both the technical and logistical challenges coupled with an objective view of the advantages and disadvantages from both the technical and financial perspectives. The analysis and model used by the AMTC will serve to provoke other mask shops to prepare their own analyses then consider this new paradigm for mask characterization and qualification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.