The flavor precursors of 17 species belonging to the Alliaceae family were analyzed by HPLC, and results were evaluated with respect to the classification of species into their genus, subgenus, and section. Identification and quantification of these precursors were carried out by synthetic and natural reference materials. In addition, nine of these species were investigated in terms of their alliinase activity. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples, and (+)-S-methyl-L-cysteine sulfoxide was most abundant. (+)-S-Propyl-L-cysteine sulfoxide was detected in only a few, not closely related, species. Analysis of the crude protein extract of nine species gave evidence that alliinase activities of samples were similar in terms of pH and temperature optimum, K(M) value, and substrate specificity. For all investigated protein extracts, the highest specific alliinase activity was found for (+)-S-(2-propenyl)-L-cysteine sulfoxide (alliin). The substrate specificity of these enzymes was not related to relative abundance of the cysteine sulfoxides. However, SDS-PAGE yielded some significant differences among species in terms of their total protein compositions. Species belonging to different subgenera exhibited a specific protein pattern with molecular masses between 13 and 35 kDa.
Various Allium hybrids, obtained by the crossbreeding of Allium cepa (onion) as the mother plant and six taxonomically distant wild species obtained by embryo rescue, were investigated with special respect to their individual profiles of cysteine sulfoxides as well as enzymically and nonenzymically formed aroma substances. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. These thiosulfinates were converted to a variety of sulfides by steam distillation. SPME-gas chromatography (GC) and high-performance liquid chromatography (HPLC) used for the analysis of aroma components and their precursors permitted a high sample throughput, so that numerous gene bank accessions and Allium breeding materials were analyzed within a comparatively short time. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples at different levels, but (+)-S-methyl-L-cysteine sulfoxide (methiin) was the most abundant sulfoxide present. (+)-S-(trans-1-Propenyl)-L-cysteine sulfoxide (isoalliin) is typical for onion and was found in all investigated hybrids. The pattern of the other cysteine sulfoxides depended strongly on the parent plants used. The profile of aroma components corresponded with the related pattern of aroma precursors (cysteine sulfoxides). Successful hybridization was proven by randomly amplified polymorphic DNA analysis. Together with these established marker techniques, HPLC and SPME-GC analysis provide support to breeding projects designed to improve the health and aroma properties of Allium hybrids.
Alliinase (EC 4.4.1.4) has been isolated from commercially available garlic (Allium sativum L., Alliaceae) powder and was investigated with respect to its use as ingredient of herbal remedies. The enzyme was purified to apparent homogeneity and results were compared with those obtained from a sample of fresh A. sativum var. pekinense. The purification of the enzyme involved a gel filtration step as well as affinity chromatography on concanavalin-A agarose. Vmax using L-(+)-alliin as substrate (252 mumol min-1 mg-1) was at the lower range of data given in the literature (214-390 mumol min-1 mg-1). L-(-)-Alliin was also accepted as substrate (54 mumol min-1 mg-1). Vmax for alliinase from A. sativum var. pekinense was at 332 mumol min-1 mg-1 and 90 mumol min-1 mg-1 for L-(+)- and L-(-)-alliin, respectively. The Km values for alliinase from garlic powder were estimated to be 1.6 mM for L-(+)-alliin and 2.8 mM for L-(-)-alliin. In contrast to literature values, both temperature and pH optima were somewhat higher (36 degrees C and pH 7.0 versus 33 degrees C and pH 6.5, respectively). The enzyme was found to be active in a range from pH 5 to pH 10. Gel electrophoresis gave evidence that the alliinase obtained from garlic powder consisted of two slightly different subunits with molecular weights of 53 and 54 kDa whereas alliinase obtained from fresh garlic consists of two identical subunits. It is assumed that the alliinase gets significantly altered during the drying process of garlic powder but is still capable to convert alliin to allicin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.