A two-phase Newtonian surface fluid is modelled as a surface Cahn-HilliardNavier-Stokes equation using a stream function formulation. This allows one to circumvent the subtleties in describing vectorial second-order partial differential equations on curved surfaces and allows for an efficient numerical treatment using parametric finite elements. The approach is validated for various test cases, including a vortex-trapping surface demonstrating the strong interplay of the surface morphology and the flow. Finally the approach is applied to a Rayleigh-Taylor instability and coarsening scenarios on various surfaces.
We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient-flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite-element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.
We consider the derivation and numerical solution of the flow of passive and active polar liquid crystals, whose molecular orientation is subjected to a tangential anchoring on an evolving curved surface. The underlying passive model is a simplified surface Ericksen-Leslie model, which is derived as a thin-film limit of the corresponding three-dimensional equations with appropriate boundary conditions. A finite element discretization is considered and the effect of hydrodynamics on the interplay of topology, geometric properties and defect dynamics is studied for this model on various stationary and evolving surfaces. Additionally, we consider an active model. We propose a surface formulation for an active polar viscous gel and exemplarily demonstrate the effect of the underlying curvature on the location of topological defects on a torus.
We consider a thin film limit of a Landau-de Gennes Q-tensor model. In the limiting process, we observe a continuous transition where the normal and tangential parts of the Q-tensor decouple and various intrinsic and extrinsic contributions emerge. The main properties of the thin film model, like uniaxiality and parameter phase space, are preserved in the limiting process. For the derived surface Landau-de Gennes model, we consider an -gradient flow. The resulting tensor-valued surface partial differential equation is numerically solved to demonstrate realizations of the tight coupling of elastic and bulk free energy with geometric properties.
We derive a Cartesian componentwise description of the covariant derivative of tangential tensor fields of any degree on general manifolds. This allows to reformulate any vector-and tensor-valued surface PDE in a form suitable to be solved by established tools for scalar-valued surface PDEs. We consider piecewise linear Lagrange surface finite elements on triangulated surfaces and validate the approach by a vector-and a tensor-valued surface Helmholtz problem on an ellipsoid. We experimentally show optimal (linear) order of convergence for these problems. The full functionality is demonstrated by solving a surface Landau-de Gennes problem on the Stanford bunny. All tools required to apply this approach to other vector-and tensor-valued surface PDEs are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.