The farnesoid X receptor (FXR) is a nuclear bile acid receptor involved in bile acid homeostasis, hepatic and intestinal inflammation, liver fibrosis, and cardiovascular disease. We studied the effect of short-term treatment with obeticholic acid (INT-747), a potent selective FXR agonist, on intrahepatic hemodynamic dysfunction and signaling pathways in different rat models of cirrhotic portal hypertension (PHT). For this, thioacetamide (TAA)-intoxicated and bile-ductligated (BDL) rats were used as models. After gavage of two doses of 30 mg/kg of INT-747 or vehicle within 24 hours, in vivo hemodynamics were assessed. Additionally, we evaluated the direct effect of INT-747 on total intrahepatic vascular resistance (IHVR) and intrahepatic vascular tone (endothelial dysfunction and hyperresponsiveness to methoxamine) by means of an in situ liver perfusion system and on hepatic stellate cell contraction in vitro. FXR expression and involved intrahepatic vasoactive pathways (e.g., endothelial nitric oxide synthase [eNOS], Rhokinase, and dimethylarginine dimethylaminohydrolase [DDAH]) were analyzed by immunohistochemistry, reverse-transcriptase polymerase chain reaction, or western blotting. In both cirrhotic models, FXR expression was decreased. Treatment with INT-747 in TAA and BDL reactivated the FXR downstream signaling pathway and decreased portal pressure by lowering total IHVR without deleterious systemic hypotension. In the perfused TAA and BDL cirrhotic liver, INT-747 improved endothelial vasorelaxation capacity, but not hyperresponsiveness. In both groups, this was associated with an increased eNOS activity, which, in TAA, related to down-regulation of Rho-kinase and in BDL to up-regulation of DDAH-2. Conclusion: FXR agonist INT-747 improves PHT in two different rat models of cirrhosis by decreasing IHVR. This hemodynamic effect relates to increased intrahepatic eNOS activity by pathways that differ depending on the etiology of cirrhosis. (HEPATOLOGY 2014;59:2286-2298 See Editorial on Page 2072 P ortal hypertension (PHT) is the driving force behind many of the lethal complications of cirrhosis, such as gastroesophageal variceal bleeding, hepatic encephalopathy, ascites, hepatorenal syndrome, and bacterial infections. [1][2][3][4] Despite its effect on morbidity and mortality, current pharmacotherapy remains almost exclusively restricted to the use of nonselective beta-adrenergic blockers. These drugs indisputably lower PHT by decreasing portal inflow, 5-9 but are
Bacterial translocation (BTL) drives pathogenesis and complications of cirrhosis. Farnesoid X-activated receptor (FXR) is a key transcription regulator in hepatic and intestinal bile metabolism. We studied potential intestinal FXR dysfunction in a rat model of cholestatic liver injury and evaluated effects of obeticholic acid (INT-747), an FXR agonist, on gut permeability, inflammation, and BTL. Rats were gavaged with INT-747 or vehicle during 10 days after bile-duct ligation and then were assessed for changes in gut permeability, BTL, and tight-junction protein expression, immune cell recruitment, and cytokine expression in ileum, mesenteric lymph nodes, and spleen. Auxiliary in vitro BTL-mimicking experiments were performed with Transwell supports. Vehicle-treated bile duct-ligated rats exhibited decreased FXR pathway expression in both jejunum and ileum, in association with increased gut permeability through increased claudin-2 expression and related to local and systemic recruitment of natural killer cells resulting in increased interferon-γ expression and BTL. After INT-747 treatment, natural killer cells and interferon-γ expression markedly decreased, in association with normalized permeability selectively in ileum (up-regulated claudin-1 and occludin) and a significant reduction in BTL. In vitro, interferon-γ induced increased Escherichia coli translocation, which remained unaffected by INT-747. In experimental cholestasis, FXR agonism improved ileal barrier function by attenuating intestinal inflammation, leading to reduced BTL and thus demonstrating a crucial protective role for FXR in the gut-liver axis.
Thioacetamide, adapted to weekly weight changes, leads to a homogenous, reproducible model of cirrhosis in the rat in 18 weeks, which is associated with all the typical characteristics of portal hypertension, including endothelial dysfunction.
Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis.
Reduced intrahepatic endothelial nitric oxide synthase (eNOS) activity contributes to the pathogenesis of portal hypertension (PHT) associated with cirrhosis. We evaluated whether asymmetric dimethylarginine (ADMA), a putative endogenous NOS inhibitor, may be involved in PHT associated with cirrhosis. Two rat models of cirrhosis (thioacetamide [TAA]-induced and bile duct excision [BDE]-induced, n ؍ 10 each), one rat model of PHT without cirrhosis (partial portal vein-ligated [PPVL], n ؍ 10), and sham-operated control rats (n ؍ 10) were studied. We assessed hepatic NOS activity, eNOS protein expression, plasma ADMA levels, and intrahepatic endothelial function. To evaluate intrahepatic endothelial function, concentration-effect curves of acetylcholine were determined in situ in perfused normal rat livers and livers of rats with TAAor BDE-induced cirrhosis (n ؍ 10) that had been preincubated with either vehicle or ADMA; in addition, measurements of nitrite/nitrate (NOx) and ADMA were made in perfusates. Both models of cirrhosis exhibited decreased hepatic NOS activity. In rats with TAA-induced cirrhosis, this decrease was associated with reduced hepatic eNOS protein levels and immunoreactivity. Rats with BDE-induced cirrhosis had eNOS protein levels comparable to those in control rats but exhibited significantly higher plasma ADMA levels than those in all other groups. In normal perfused liver, ADMA induced impaired endothelium-dependent vasorelaxation and reduced NOx perfusate levels, phenomena that were mimicked by N G -nitro-L-arginine-methyl ester. In contrast to perfused livers with cirrhosis induced by TAA, impaired endothelial cell-mediated relaxation in perfused livers with cirrhosis induced by BDE was exacerbated by ADMA and was associated with a decreased rate of removal of ADMA (34.3% ؎ 6.0% vs. 70.9% ؎ 3.2%). In conclusion, in rats with TAA-induced cirrhosis, decreased eNOS enzyme levels seem to be responsible for impaired NOS activity; in rats with biliary cirrhosis, an endogenous NOS inhibitor, ADMA, may mediate decreased NOS activity. (HEPATOLOGY 2005;42:1382-1390
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.