Introdução: As plantas medicinais são capazes de fornecer fármacos de grande importância clínica, a exemplo dos monoterpenos. Estes são conhecidos por apresentarem uma variedade de efeitos em diferentes sistemas biológicos, justificando a necessidade de pesquisas para investigação do potencial terapêutico e tóxico. Com o avanço tecnológico, modelos in silico vêm sendo amplamente aplicados para a avaliação de potenciais atividades farmacológicas e de toxicidade de compostos em ambientes metabólicos de mamíferos. Objetivo: Avaliar os efeitos farmacológicos e toxicológicos do monoterpeno Neral com finalidade odontológica, utilizando uma metodologia in silico. Metodologia: Inicialmente utilizou-se o software Pubchem® para o desenho da molécula, em seguida a análise da probabilidade da atividade da molécula foi realizada com o software Pass Online®. Na análise dos parâmetros farmacológicos, foi avaliado a biodisponibilidade oral teórica do Neral, pela “Regra dos Cinco” de Lipinski com o software Molinspiration Cheminformatics. Finalmente, os parâmetros toxicológicos bem como o estudo teórico sobre o efeito carcinogênico, o teste de AMES e a toxicidade oral aguda foi efetuada no programa admetSAR. Resultados e Conclusão: No Pass Online a molécula do Neral possui 14 possíveis atividades farmacológicas relacionadas à Odontologia, dentre elas potencial antifúngico, anti-inflamatória e antibacteriana; no Molinspiration a molécula do Neral demonstrou estar de acordo com as cinco regras propostas por Lipinsk, logo, apresentando boa biodisponibilidade oral teórica e, pelo teste de toxicidade do admetSAR, apesar de apresentar baixo risco de toxicidade teórica oral, revelou leve potencial carcinogênico.Descritores: Disponibilidade Biológica; Toxicidade; Plantas Medicinais; Odontologia.ReferênciasLima GR. Proposta de resolução específica para manipulação de plantas medicinais e fitoterápicos [monografia]. Brasília: Universidade de Brasília; 2006.Guyot MM. Perspectivas de la fitoterapia. Acta Farm. 1990;9(2):131-38.Turolla MSR, Nascimento ES. Informações toxicológicas de alguns fitoterápicos utilizados no Brasil. Rev Bras Ciênc Farmac. 2006;42(2):289-306.Firn RD, Jones CG. Natural products - a simple model to explain chemical diversity. Nat Prod Rep. 2003;20(4):382-91.Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem. 2011;46(10):4769-807.Lam KL. New aspects of natural products in drug discovery. Trends Microbiol. 2007;15(6):279-89.Agra MF, Freitas PF, Barbosa-Filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev bras farmacogn. 2007;17(1):114-40.Bajorath J. Positioning ADMET in silico Tools in Drug Discovery. Drug Discov Today. 2004;9(1):14-15.Santos A, Paduan RH, Gazin ZC, Jacomassi E, D’Oliveira PS, Cortez DAG et al. Determinação do rendimento e atividade antimicrobiana do óleo essencial de Cymbopogon citratus (DC) Stapf em função de sazonalidade e consorcimento. Rev bras farmacogn. 2009;19(2a):436-41.Mann J. Secondary metabolism. 2. ed. Oxford: Clarendon Press; 1995.Simões CMO. Farmacognosia: da planta ao medicamento. 5. ed. Porto Alegre: UFRGS; 2004.MC Murry J. Química Orgânica - Combo. 7.ed. São Paulo: Cengage Learning; 2011.Srinivas N, Sandeep KS, Anusha Y, Devendra BN. In vitro cytotoxic evaluation and detoxification of monocrotaline (mct) alkaloid: an in silico approach. Int Inv J Biochem Bioinform. 2014;2(3):20-29.Lipinski CA. Lombardo F, Dominy B.W, Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26.Molin-spiration. Disponível em: https://www.molinspiration.com/cgi-bin/properties. Acesso em: 10 janeiro 2019.Admet Predictor. Disponível em: https://www. simulations-plus.com/software/admetpredictor/. Acesso em: 10 janeiro 2019.Oliveira VF, Oliveira HMBF, Medeiros CIS, Oliveira-Filho AA, Rego TG. Análise farmacológica e toxicológica in silico do flavonoide 5- hidroxi-4’, 7-dimetoxiflavona. JMHP. 2018;3(1):913-21.Severino VGP, Felixa MA, Silva MFGF, Lucarini R, Martins CHG. Chemical study of Hortia superba (Rutaceae) and investigation of the antimycobacterial activity of crude extracts and constituents isolated from Hortia species. Quím Nova. 2015;38(1):42-5.BardajI DK, Reis EB, Medeiros TC, Lucarini R, Crotti AE, Martins CH. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria. Nat Prod Res. 2016;30(10):1178-81.Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61.Suleimen E, Ibataev ZA, Iskakova ZB, Ishmuratova MY, Ross SA, Martins CHG. Constituent composition and biological activity of essential oil from Artemisia terrae-albae. Chem Nat Compd. 2016;52:173-75.Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017;16(1):190.Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement. Alternat Med. 2016:2680409.Ferreira-Filho JCC, Gondim BLC, Cunha DA, Figueiredo CC, Valença AMG. Physical properties and antibacterial activity of herbal tinctures of Calendula (Calendula officinalis L.) and Cashew Tree (Anacardium occidentale L.). Pesqui Bras Odontopediatria Clin Integr. 2014; 14(1):49-53.Ccahuana-Vasquez RA, Santos SS, Koga-Ito CY, Jorge AO. Antimicrobial activity of Uncaria tomentosa against oral human pathogens. Braz oral res. 2007;21(1):46-50.Lima Júnior JF, Dimenstein M. A fitoterapia na saúde pública em Natal/RN: visão do odontólogo. Saude Rev.2006;8(19):37-44.Molina FP, Majewski M, Perrela FA, Oliveira LD, Junqueira JC, Jorge AOC. Própolis, sálvia, calêndula e mamona: atividade antifúngica de extratos naturais sobre cepas de Candida albicans. Ciênc Odontol Bras. 2008;11(2):86-93.Vedani A, Dobler M, Lill MA. The challenge of predicting drug toxicity in silico. Basic Clin Pharmacol Toxicol. 2006;99(3):195-208.Chand B. Structure-bioactivity-relationships and crystallographic analysis of secondary interactions in pregnane-based steroids. J Chem Crystallogr. 2011;41(12):1901-26.Kasali AA, Oyedeji AO, Ashilokun AO. Volatile leaf oil constituents of Cymbopogon citratus (DC) Stapf. Flavour Fragr J. 2001;16(5):377-78.Margetts J. Aroma chemicals V: natural aroma chemicals. In: Rowe D (ed). Chemistry and technology of flavours and fragrances. Oxford: Blackwell Publishing; 2005.Başer KHC, Demirci F. Chemistry of essential oils. In: Berger RG. (ed.). Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer: Berlin; 2007.Pavarini DP, Lopes NP. A ecologia química e a biossíntese dos terpenos voláteis das “arnicas-da-serra” (Lychnophora spp.). Rev Virtual Quim.2016;8(1):242-61.Al-Rehaily AJ, Ahmad MS, Mustafa J, Al-Oqail MM, Hassan W, Khan SI et al. Solanopubamine, a rare steroidal alkaloid from Solanum schimperianum: Synthesis of some new alkyl and acyl derivatives, their anticancer and antimicrobial evaluation. J Saudi Chem Soc.2013;17(1):67-76.Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S et al. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteomics. 2011;74(12):2554-74.Nigsch F, Lounkine E, Mccarren P, Cornett B, Glick M, Azzaoui K et al. Computational methods for early predictive safety assessment from biological and chemical data. Expert Opin Drug Metab Toxicol. 2011;7(12):1497-511.Khurana N, Ishar MP, Gajbhiye A, Goel RK. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur J Pharmacol. 2011;662(1-3):22-30.Verma A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac J Trop Biomed. 2012;3(1):S1735-37.Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area (PSA) as a sum on fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43(20):3714-17.Veber DF, Johnson SR, Cheng HY, Smith BR, Ward WK, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23.Ursu O, Oprea TI. Model-free drug-likeness from fragments. J Chem Inf Model. 2010;50(8):1387-94.Ursu O, Rayan A, Goldblum A, Oprea TI. Understanding drug-likeness. Wires Comput Mol Sci. 2011;1(5):760-81.Hadda TB, Ahmad M, Sultana S, Shaheen U, Bader A, Srivastava St al. POM analyses for antimicrobial evaluation of thienopyrimidinones derivatives: a rapid method for drug design. Med Chem Res. 2014;23(1) 10.1007/s00044-013-0614-4.De Smet PA. Health risks of herbal remedies: an update. Clin Pharmacol Ther. 2004;76(1):1-17.Saraiva SRGL, Guimarães AL, Oliveira AP, Saraiva HCC, Oliveira-Júnior RG, Barros VRP et al. Antioxidant activity and acute toxicity of Neoglaziovia variegata (Bromeliaceae). Afr J Biotechnol. 2012;11(1):13998-14006.
Introduction: sialochemical studies demonstrate that saliva has biomolecular proportions similar to blood, and can function as a means of diagnosing cardiovascular diseases whose factors are dyslipidemia. Objective: To assess the correlation between blood lipid concentrations and saliva. Methodology: The unstimulated saliva of 40 dentistry students, ages 18 to 29, both genders, was collected by the modified Navazesh method, then centrifuged. A venipuncture for blood collection was performed, then the blood was centrifuged and the serum separated. Labtest® kits were measured for salivary and blood cholesterol and triglycerides using the colorimetric enzymatic method. Statistically, paired Student's t-test and Pearson's correlation test were used. The results were expressed as mean more or less the standard error of the mean (e.p.m). Graph Pad Prism software version 6.01 was used. Results: 72.5% of the participants were female and 27.5% male, the average age was 21.55 ± 0.41 for the female gender and 21.64 ± 1.07 for the male. The average age of individuals of both genders was 21.63 ± 0.41 years. Sialometric data showed an average salivary flow of 0.71 ± 0.15 ml / min. The values of cholesterol and salivary triglycerides were significantly lower when compared to serum values and there was no correlation between these parameters. Conclusion: Saliva showed lower cholesterol and triglyceride concentrations than blood, with no significant correlation of these lipids between fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.