BackgroundNext-Generation Sequencing (NGS) is increasingly being used as a molecular epidemiologic tool for discerning ancestry and traceback of the most complicated, difficult to resolve bacterial pathogens. Making a linkage between possible food sources and clinical isolates requires distinguishing the suspected pathogen from an environmental background and placing the variation observed into the wider context of variation occurring within a serovar and among other closely related foodborne pathogens. Equally important is the need to validate these high resolution molecular tools for use in molecular epidemiologic traceback. Such efforts include the examination of strain cluster stability as well as the cumulative genetic effects of sub-culturing on these clusters. Numerous isolates of S. Montevideo were shot-gun sequenced including diverse lineage representatives as well as numerous replicate clones to determine how much variability is due to bias, sequencing error, and or the culturing of isolates. All new draft genomes were compared to 34 S. Montevideo isolates previously published during an NGS-based molecular epidemiological case study.ResultsIntraserovar lineages of S. Montevideo differ by thousands of SNPs, that are only slightly less than the number of SNPs observed between S. Montevideo and other distinct serovars. Much less variability was discovered within an individual S. Montevideo clade implicated in a recent foodborne outbreak as well as among individual NGS replicates. These findings were similar to previous reports documenting homopolymeric and deletion error rates with the Roche 454 GS Titanium technology. In no case, however, did variability associated with sequencing methods or sample preparations create inconsistencies with our current phylogenetic results or the subsequent molecular epidemiological evidence gleaned from these data.ConclusionsImplementation of a validated pipeline for NGS data acquisition and analysis provides highly reproducible results that are stable and predictable for molecular epidemiological applications. When draft genomes are collected at 15×-20× coverage and passed through a quality filter as part of a data analysis pipeline, including sub-passaged replicates defined by a few SNPs, they can be accurately placed in a phylogenetic context. This reproducibility applies to all levels within and between serovars of Salmonella suggesting that investigators using these methods can have confidence in their conclusions.
c Shiga toxin-producing Escherichia coli (STEC) belonging to certain serogroups (e.g., O157 and O26) can cause serious conditions like hemolytic-uremic syndrome (HUS), but other strains might be equally pathogenic. While virulence factors, like stx and eae, have been well studied, little is known about the prevalence of the E. coli hemolysin genes (hlyA, ehxA, e-hlyA, and sheA) in association with these factors. Hemolysins are potential virulence factors, and ehxA and hlyA have been associated with human illness, but the significance of sheA is unknown. Hence, 435 E. coli strains belonging to 62 different O serogroups were characterized to investigate gene presence and phenotypic expression of hemolysis. We further investigated ehxA subtype patterns in E. coli isolates from clinical, animal, and food sources. While sheA and ehxA were widely distributed, e-hlyA and hlyA were rarely found. Most strains (86.7%) were hemolytic, and significantly more hemolytic (95%) than nonhemolytic strains (49%) carried stx and/or eae (P < 0.0001). ehxA subtyping, as performed by using PCR in combination with restriction fragment length polymorphism analysis, resulted in six closely related subtypes (>94.2%), with subtypes A/D being eae-negative STECs and subtypes B, C, E, and F eae positive. Unexpectedly, ehxA subtype patterns differed significantly between isolates collected from different sources (P < 0.0001), suggesting that simple linear models of exposure and transmission need modification; animal isolates carried mostly subtypes A/C (39.3%/42.9%), food isolates carried mainly subtype A (81.9%), and clinical isolates carried mainly subtype C (66.4%). Certain O serogroups correlated with particular ehxA subtypes: subtype A with O104, O113, and O8; B exclusively with O157; C with O26, O111, and O121.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.