This article aimed to produce, characterize and evaluate different surface-modified naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (CB13) loaded poly(lactic-co-glycolic acid) nanoparticles in order to improve their oral absorption and in vivo biodistribution. Plain and surface-modified PLGA nanoparticles were successfully prepared using a nanoprecipitation method. Chitosan, Eudragit RS, lecithin and vitamin E were used as surface modifying agents. The NPs were evaluated in terms of mean diameter and size distribution, zeta potential, morphology, drug loading, drug release profiles, mucoadhesive properties, in vitro cell viability and uptake and in vivo biodistribution. Mean particle size distributions in the range of 253-344 nm, spherical shape and controlled zeta potential values were observed depending on the additive employed. High values of entrapment efficiency were obtained for all the formulations. Lecithin and vitamin E modified particles showed higher release rates when compared to the rest of formulations. A clear improvement in ex vivo mucoadhesion properties was observed in the case of chitosan- and Eudragit RS-modified nanoparticles. Chitosan-poly(lactic-co-glycolic acid) nanoparticles showed the highest uptake values on Caco-2 cells. Biodistribution assays proved that most of the particles were accumulated in liver and spleen. An important goal has been achieved in this investigation: CB13, a highly lipophilic drug with low water solubility, can reach the interior of cells more efficiently when it is included in these surface-modified polymeric carriers.
This article presents the potential of PLGA nanoparticles for the oral administration of drugs. Different strategies are used to improve oral absorption of these nanoparticles. These strategies are based on modification of nanoparticle surface properties. They can be achieved either by coating the nanoparticle surface with stabilizing hydrophilic bioadhesive polymers or surfactants, or by incorporating biodegradable copolymers containing a hydrophilic moiety. Some substances such as chitosan, vitamin E, methacrylates, lectins, lecithins, bile salts and RGD molecules are employed for this purpose. Of especial interest are nanoparticles production methods and, in order to improve oral bioavailability, the mechanism of each additive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.