Silver nanoparticles (Ag-NPs) have diverted the attention of the scientific community and industrialist itself due to their wide range of applications in industry for the preparation of consumer products and highly accepted application in biomedical fields (especially their efficacy against microbes, anti-inflammatory effects, and wound healing ability). The governing factor for their potent efficacy against microbes is considered to be the various mechanisms enabling it to prevent microbial proliferation and their infections. Furthermore a number of new techniques have been developed to synthesize Ag-NPs with controlled size and geometry. In this review, various synthetic routes adapted for the preparation of the Ag-NPs, the mechanisms involved in its antimicrobial activity, its importance/application in commercial as well as biomedical fields, and possible application in future have been discussed in detail.
Infections with bacteria have become a serious problem in joint arthroplasty. This study reports about in vitro antibacterial activity and in vitro cell compatibility of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers loaded with metallic silver particles of a size of 5-13 nm. In vitro antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae was studied by microplate proliferation tests. The adhesion, viability, and proliferation properties of fibroblasts (NIH 3T3) and differentiation of osteoblasts (MC3T3-E1) were done to study in vitro cell compatibility of the scaffolds. As the results, only silver-containing PHBV nanofibrous scaffolds showed a high antibacterial activity and an inhibitory effect on the growth of both Staphylococcus aureus and Klebsiella pneumoniae bacteria. The nanofibrous scaffolds having silver nanoparticles <1.0% were free of in vitro cytotoxicity. To sum up, the PHBV nanofibrous scaffolds having nanoparticles <1.0 wt % showed not only good antibacterial activity but also good in vitro cell compatibility. It is considered that the PHBV nanofibrous scaffolds with silver nanoparticles <1.0 wt % have a potential to be used in joint arthroplasty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.