Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
Abstract. We present deep VLT/NACO infrared imaging and spectroscopic observations of the brown dwarf 2MASSWJ 1207334−393254, obtained during our on-going adaptive optics survey of southern young, nearby associations. This ∼25 M Jup brown dwarf, located ∼70 pc from Earth, has been recently identified as a member of the TW Hydrae Association (age ∼ 8 Myr). Using adaptive optics infrared wavefront sensing to acquire sharp images of its circumstellar environment, we discovered a very faint and very red object at a close separation of ∼780 mas (∼55 AU). Photometry in the H, K s and L bands and upper limit in J-band are compatible with a spectral type L5−L9.5. Near-infrared spectroscopy is consistent with this spectral type estimate. Different evolutionary models predict an object within the planetary regime with a mass of M = 5 ± 2 M Jup and an effective temperature of T eff = 1250 ± 200 K.Key words. 2MASSWJ 1207334−393254 -brown dwarf -giant planet -adaptive optics imaging and spectroscopy
Key Words stellar evolution, pre-main sequence, stellar kinematic groups, origins: stars and planetary systems ■ Abstract Until the late 1990s the rich Hyades and the sparse UMa clusters were the only coeval, comoving concentrations of stars known within 60 pc of Earth. Both are hundreds of millions of years old. Then beginning in the late 1990s the TW Hydrae Association, the Tucana/Horologium Association, the β Pictoris Moving Group, and the AB Doradus Moving Group were identified within ∼60 pc of Earth, and the η Chamaeleontis cluster was found at 97 pc. These young groups (ages 8-50 Myr), along with other nearby, young stars, will enable imaging and spectroscopic studies of the origin and early evolution of planetary systems.
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30-day multiwavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes, and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" having discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Subject headings:Electronic address: amc@ipac.caltech.edu * Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA's RSSD
Following the 1983 IRAS detection and subsequent imaging of its extensive dusty circumstellar disk, b Pictoris became the prototypical and most studied example of a potential forming planetary system. Here we report the identification of 17 star systems, each with one or more characteristics indicative of extreme youth, that are moving through space together with b Pic. This diverse set of ∼12 million yr old star systems, which includes a ∼35 Jupiter mass brown dwarf, and a wide assortment of dusty circumstellar disks, is the comoving, youthful group closest to Earth. Their unique combination of youth and proximity to Earth makes group members-many of which have masses similar to that of the Sun-prime candidates for imaging of warm planets and dusty circumstellar disks with ground-and space-based telescopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.