The purpose of the study is to analyze the configurations of Plug-in Hybrid Electric Vehicles (PHEV) with respect to fuel economy. Existing studies mostly focus on hybrid systems or few PHEV systems by only considering power split ratio and component efficiency. This paper adds original contribution to these literatures. First of all, this study compares and analyzes "series + α" PHEV-Input split, Series-output split and Series-parallel, which is consisted of a single Planetary gear or spur gear and clutches. Those are currently applied to mass-production vehicles such as Toyota Prius PHEV, Chevrolet Volt and Honda Accord PHEV. On top of that, it examines the impact of the transmission mechanical losses on Dynamic programming (DP) results and especially the planetary gear loss is modelled using power split ratio analysis. Lastly, the effect of Series mode for each PHEV system is examined by analysis of the theoretical system efficiency and DP in a certain driving profile. From this study the strength and weakness of PHEV systems are revealed depending on a driving condition and battery status, e.g. charging depleting (CD) or charging sustaining (CS). The PHEV system analysis in this study can help select proper system for a certain purpose.
The purpose of the study is to analyze the configurations of Plug-in Hybrid Electric Vehicles (PHEV) with respect to fuel economy. Existing studies mostly focus on hybrid systems or few PHEV systems by only considering power split ratio and component efficiency. This paper adds original contribution to these literatures. First of all, this study compares and analyzes "series + α" PHEV -Input split, Series-output split and Series-parallel, which is consisted of a single Planetary gear or spur gear and clutches. Those are currently applied to mass-production vehicles such as Toyota Prius PHEV, Chevrolet Volt and Honda Accord PHEV. On top of that, it examines the impact of the transmission mechanical losses on Dynamic programming (DP) results and especially the planetary gear loss is modelled using power split ratio analysis. Lastly, the effect of Series mode for each PHEV system is examined by analysis of the theoretical system efficiency and DP in a certain driving profile. From this study the strength and weakness of PHEV systems are revealed depending on a driving condition and battery status, e.g. charging depleting (CD) or charging sustaining (CS). The PHEV system analysis in this study can help select proper system for a certain purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.