Titanium dioxide nanoparticles (TiO NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO NPs is still limited. In our study, we investigate the effects of anatase TiO NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.
Acetamiprid is one of the most widely used neonicotinoids. This study investigates toxic effects of repeated oral administration of three doses of acetamiprid (1/20, 1/10, and 1/5 of LD) during 60 days. For this, male Wistar rats were divided into four different groups. Hematological, biochemical, and toxicopathic effects of acetamiprid were evaluated. According to the results, a significant decrease in the body weight gain at the highest dose 1/5 of LD of acetamiprid was noticed. An increase in the relative liver weight was also observed at this dose level. The hematological constituents were affected. A significant decrease in RBC, HGB, and HCT in rats treated with higher doses of acetamiprid (1/10 and 1/5 of LD) was noted. However, a significant increase in WBC and PLT were observed at the same doses. Furthermore, acetamiprid induced liver toxicity measured by the increased activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphates (ALPs), and lactate dehydrogenase (LDH) which may be due to the loss of hepatic membrane architecture and hepatocellular damage. In addition, exposure to acetamiprid resulted in a significant decrease in the levels of superoxide dismutase and catalase activities (p ≤ 0.01) with concomitant increase in lipid peroxidation in rat liver. These findings highlight the subchronic hepatotoxicity of acetamiprid.
DNA fragmentation can be deleterious on spermatozoon morphology but the pathogenesis of teratozoospermia associated with DNA breaks is not fully understood, even if oxidative attacks and defects in chromatin maturation are hypothesized. Therefore, this study is one of the first to clarify on the underlying hypothesizes behind such observations. The objectives of our study were to assess the role of oxidative attacks in DNA damage pathogenesis in ejaculated spermatozoa from patients with isolated teratozoospermia. We aimed to assess the correlation of DNA breaks with morphologically abnormal spermatozoa, as well as ROS level and impairment chromatin condensation. A total of 90 patients were divided into two groups, men with isolated teratozoospermia (n = 60) and men with normal semen parameters (n = 30) as controls. DNA fragmentation was evaluated by TUNEL assay; chromatin immaturity was studied using acridine orange and toluidine blue staining. We evaluated the ability of spermatozoa to produce reactive oxygen species with nitro blue tetrazolium staining. Patient with teratozoospermia when compared to fertile men showed significantly higher rates of semen ROS production, sperm hypocondensated chromatin, denaturated DNA, and fragmented DNA. All these parameters were positively correlated with abnormal sperm morphology. The studied DNA integrity markers were also correlated with ROS production. Fragmented DNA is the main pathway leading to morphology defects in the sperm. In fact, impaired chromatin compaction may induce DNA breaks and free radicals, which can break the DNA backbone indirectly, by reducing protamination and disulphide bond formation, as oxidative attack appears to be the major cause of poor semen morphology.
This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.