We present a new method to auto-adjust camera exposure for outdoor robotics. In outdoor environments, scene dynamic range may be wider than the dynamic range of the cameras due to sunlight and skylight. This can results in failures of vision-based algorithms because important image features are missing due to under-/over-saturation. To solve the problem, we adjust camera exposure to maximize image features in the gradient domain. By exploiting the gradient domain, our method naturally determines the proper exposure needed to capture important image features in a manner that is robust against illumination conditions. The proposed method is implemented using an off-the-shelf machine vision camera and is evaluated using outdoor robotics applications. Experimental results demonstrate the effectiveness of our method, which improves the performance of robot vision algorithms.
We introduce a novel method to automatically adjust camera exposure for image processing and computer vision applications on mobile robot platforms. Because most image processing algorithms rely heavily on low-level image features that are based mainly on local gradient information, we consider that gradient quantity can determine the proper exposure level, allowing a camera to capture the important image features in a manner robust to illumination conditions. We then extend this concept to a multi-camera system and present a new control algorithm to achieve both brightness consistency between adjacent cameras and a proper exposure level for each camera. We implement our prototype system with off-theshelf machine-vision cameras and demonstrate the effectiveness of the proposed algorithms on practical applications, including pedestrian detection, visual odometry, surround-view imaging, panoramic imaging and stereo matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.