Nanostructured manganese oxides were synthesized by a sol-gel method using manganese acetate (MnAc2) and citric acid (C6H8O7,) as precursors, and characterized by Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The nano-rod structure of MnO2 developed gradually when the calcination temperature varied from 380 to 580 degrees C. As the pH increased, the pore size increased, while the specific surface area decreased. The effects of the pH and calcination temperature on the electrochemical properties of the nano-MnO2 electrode, including the supercapacitive behavior, were investigated by cyclic voltammetry (CV) tests. The tests were performed between 0 and 0.8 V versus Ag/AgCl in 1 M Na2SO4 electrolyte at various scan rates (10-200 mVs(-1)). The specific capacitance of the SP-380 sample, prepared at pH 6, was equal to 269.3 Fg(-1). After 300 cycles, approximately a 3.4% increase of the specific capacitance was measured, confirming the excellent cyclability.
This study addresses the effects of the pore structures of carbon materials used as cathodes for non-aqueous lithium-air batteries on cycle life. Carbon Nanofibers (CNFs) were synthesized by electrospinning polyacrylonitrile (PAN) and carbonization. The synthesized CNF was then converted to activated carbon nanofibers (ACNFs) under flowing CO2. The specific surface areas CNFs were increased on activation. ACNFs were arranged randomly to form a web-like structure providing both oxygen pathways and a means of discharging products. To examine the electrochemical properties of ACNF, charge-discharge tests were conducted using a Swagelok-type cell at a constant current density of 0.2 mA/cm2; impedance tests were also conducted. ACNF sheet electrodes had cycle lives of up to 50 cycles, which was attributed to high surface area and porosity, although overpotentials for both charge and discharge were high. This cycling performance showed that the pore structure of sheet ACNF is more suitable for the transport of oxygen and for the storage of discharge products than carbon powders.
: Mn 1+X Co 2-X O 4 solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of 0.2 mA/ cm 2 , monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. Mn 1+X Co 2-X O 4 solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/ Co ratio. Among synthesized catalysts, Mn 1.5 Co 1.5 O 4 exhibited the best performance and cycleability, due to high charge transfer rate.
δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.