The building sector continues to register a significant rise in energy demand and environmental impact, notably in developing countries. A considerable proportion of this energy is required during the operational phase of buildings for interior heating and cooling, leading to a necessity of building performance improvement. A holistic approach in building design and construction represents a step to moderate construction costs in conjunction with reduced long-term operating costs and a low impact on the environment. The present paper presents an experimental evaluation of the energy efficiency of a building under real climate conditions; the building, which represents a holistically designed modular laboratory, is located in a moderate continental temperate climate, characteristic of the south-eastern part of the Pannonian Depression, with some sub-Mediterranean influences. Considerations for the holistic design of the building, including multi-object optimization and integrated design with a high regard for technology and operational life are described. The paper provides a genuine overview of the energy efficiency response of the building during six months of operational use through a monitored energy management system. The energetic analysis presented in the paper represents an intermediary stage as not all the energetic users were installed nor all the energetic suppliers. However, the results showed a reliable thermal response in the behaviour of recycled-PET thermal wadding used as insulation material in the building and for the intermediary stage in which the building has only secondary energy users, the energetic balance proves its efficiency, keeping the buffer stock of energy high values over 90%.
The building sector continues to play an essential role in reducing worldwide energy consumption. The reduced consumption is accompanied by stricter regulation for the thermotechnical design of the building envelope. The redefined nearly Zero Energy Building levels that will come into force for each member state will pressure designers to rethink the constructive details so that mandatory levels can be reached, without increasing the construction costs over an optimum level but at the same time reducing greenhouse gas emissions. The paper aims to illustrate the main conclusions obtained in assessing the thermo-energy performance of a steel-framed building representing a holistically designed modular laboratory located in a moderate continental temperate climate, characteristic of the south-eastern part of the Pannonian Depression with some sub-Mediterranean influences. An extensive numerical simulation of the main junctions was performed. The thermal performance was established in terms of the main parameters, the adjusted thermal resistances and global thermal insulation coefficient. Further on, the energy consumption for heating was established, and the associated energy rating was in compliance with the Romanian regulations. A parametric study was done to illustrate the energy performance of the investigated case in the five representative climatic zones from Romania. An important conclusion of the research indicates that an emphasis must be placed on the thermotechnical design of Light Steel Framed solutions against increased thermal bridge areas caused by the steel’s high thermal conductivity for all building components to reach nZEB levels. Nevertheless, the results indicate an exemplary behaviour compared to classical solutions, but at the same time, the need for an iterative redesign so that all thermo-energy performance indicators are achieved.
Resistance to progressive collapse under extreme loading is a measure of the structural robustness, and relies primarily on resistance of key elements, continuity between elements and ductility of elements and their connections. In case some hazards occur simultaneously or consecutively in a very short period of time, e.g. fire after explosion or impact, the capacity of the members and connections can be exceeded and this can initiate the progressive collapse of the structure. The paper presents the results of a research program that focused on the ultimate capacity of connection macro-components under large deformation demands and different loading rates. The specimens were extracted from extended end plate bolted beam-to-column connections with different strength and stiffness ratios to the beams.
Abstract. The period between 1960s and 1970s had a significant impact in Romania on the urban development of major cities. Because the vast expansion of the industry, the urban population has massively increased, due the large number of workers coming from the rural areas. This intense process has led to a shortage of homes on the housing market. In order to rapidly build new homes, standard residential project types were erected using large prefabricated concrete panels. By using repetitive patterns, such buildings were built in a short amount of time through the entire country. Nowadays, these buildings represent 1.8% of the built environment and accommodate more than half of a city's population. Even though these units have reached only half their intended life span, they fail to satisfy present living standards and consume huge amounts of energy for heating, cooling, ventilation and lighting. Due to the fact that these building are based on standardised projects and were built in such a large scale, the creation of a system that brings them to current standards will not only benefit the building but also it will significantly improve the quality of life within. With the transition of the existing power grids to a "smart grid" such units can become micro power plants in future electricity networks thus contributing to micro-generation and energy storage. If one is to consider the EU 20-20-20 commitments, to find ideas for alternative and innovative strategies for further improving these building through locally adapted measures can be seen as one of the most addressed issues of today. This research offers a possible retrofitting scenario of these buildings towards a sustainable future. The building envelope is upgraded using a modular insulation system with integrated solar cells. Renewable energy systems for cooling and ventilation are integrated in order to provide flexibility of the indoor climate. Due to their small floor area, the space within the apartments is redesigned for a more efficient use of space and an improved natural lighting. Active core modules are placed on top of the unused attics and a solar panel array is introduced. Furthermore accessibility issues are addressed by facilitating access for disabled people and implementing an elevator system that currently these building do not have.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.