Background The coexistence of hyperparathyroidism and thyroid cancer presents important diagnostic and management challenges. With minimally invasive parathyroid surgery trending, preoperative thyroid imaging becomes more important as concomitant thyroid and parathyroid lesions are reported. The aim of the study was to evaluate the rate of thyroid cancer in patients operated for either primary (PHPT) or secondary hyperparathyroidism (SHPT). Methods Our retrospective study included PHPT and SHPT patients submitted to parathyroidectomy and, when indicated, concomitant thyroid surgery between 2010 and 2017. Results Parathyroidectomy was performed in 217 patients: 140 (64.5%) for PHPT and 77 (35.5%) for SHPT. Concomitant thyroid surgery was performed in 75 patients with PHPT (53.6%), and 19 papillary thyroid carcinomas (PTC) were found, accounting for 13.6% from all cases with PHPT and 25.3% from PHPT cases with concomitant thyroid surgery. Thirty-one of operated SHPT patients (40.3%) also underwent thyroid surgery and 9 PTC cases were diagnosed (11.7% of all SHPT patients and 29% of patients with concomitant thyroid surgery). We found differences between PHPT and SHPT patients ( p < 0.001) with respect to age (54.6 ± 13y versus 48.8 ± 12y), female-to-male ratio (8:1 versus ~ 1:1), surgical technique (single gland parathyroidectomy in 82.8% PHPT cases; versus subtotal parathyroidectomy in 85.7% SHPT cases) and presurgical PTH (357.51 ± 38.11 pg/ml versus 1020 ± 161.38 pg/ml). Morphopathological particularities, TNM classification and multifocality incidence of PTC were similar in the two groups. All PTC from patients with SHPT were thyroid microcarcinomas (TMC, i.e. tumors with a diameter smaller than 1 cm), whereas seven out of the 19 cases with PTC and PHPT were larger than 1 cm. Conclusions PTC was frequently and similarly associated with both PHPT and SHPT irrespective of presurgical PTH levels. Thyroid tumors above 1 cm were found only in patients with PHPT. Investigators should focus also on associated thyroid nodular pathology in patients with PHPT.
To evaluate the effect of Selenium (Se) supplementation on: thyroid stimulating hormone (TSH), antiperoxidase antibodies (TPOAb) and glutathione peroxidise 1 (GPx1) in euthyroid subjects with autoimmune thyroiditis. 100 euthyroid women with autoimmune thyroiditis, from the same region, were randomized to receive daily 100 µg selenomethionine (n=50) or placebo (n=50) for 3 months. Serum concentrations of Se, TPOAb and TSH were performed in all patients at baseline and after 3 months. GPx1 activity was measured only in the interventional group before and after Se supplementation. At 3 months TSH presented a significant increase both in treated (2.49 vs. 2.09 UI/mL; p=0.001) and untreated groups (2.38 vs. 1.91 UI/mL; p=0.008). TPOAb decreased by 15.2% in patients treated with Se (p=0.002) and were not modified in untreated patients. At the end of the study Se and TPOAb were in direct insignificant correlation (r=+0.267, p=0.105). GPx1 did not show significant changes after Se supplementation. After 3 months of Se supplementation results showed a mild decrease of TPOAb and a weak negative correlation of these antibodies with Se levels. This suggests that Se treatment may improve the course of thyroid autoimmunity.
Excess iodine may induce and exacerbate autoimmune thyroiditis (AIT) in humans and animals. In order to assess the potential protective mechanisms of selenium (Se) in thyroid autoimmunity, the effects of inorganic Se (sodium selenite) administration on thyroid morphology and follicular cytology were investigated in adult Wistar rats with iodine-induced AIT. A total of 48 adult Wistar rats (24 females, 24 males) were allocated to one of four dietary regimens: C0, control; C1, only potassium iodine (KI); C2, concomitant KI and Se; C3, only KI initially, followed by Se administration. For AIT induction the rats were fed with 0.05% KI for 56 days. Se-treated rats received 0.3 mg/l sodium selenite in drinking water. Thyroid tissues were collected for pathologic diagnosis after 7 days in C0 group, 56 days in C1 and C2 groups, and 112 days in C3 group. In C1 group, moderate to severe thyroiditis was observed in 83% of males and 50% of female rats (P=0.223). In C3 group 16.7% of male rats developed moderate thyroiditis and none in C2 group, whereas no females were identified with moderate to severe thyroiditis in C2 or C3 group. Thus, the administration of Se was proven to have protective effects against thyroiditis cytology in both male and female Wistar rats.
Context. Aromatase is a key enzyme in local estrogen production by androgen conversion, especially in women post-menopause. There have been controversies concerning aromatase localization in breast carcinomas and its association with current histopathological variables. Material and Methods. Using polyclonal antibody immunohistochemistry we assessed (by intensity and percentage scores) the immunolocalization of aromatase in 70 tissue samples, and described particularities within the molecular subtypes of breast cancer. Results. Aromatase was found in all tissue compartments: tumor (95.7%), stroma (58.6%) and adipose tissue (94.3%). Aromatase expression in tumor cells correlated inversely with tumor grading (p=-0.361, p=0.027), and positively with estrogen receptor status (ER, p=0.143, p<0.001). Dividing the study group by intrinsic subtypes, a strongly inversely association between tumor aromatase and grading (p=-0.486, p<0.001), and between stromal aromatase and Ki67-index (p=-0.448, p=0.048) was observed in luminal A breast cancer. Tumor aromatase and ER percentage scores had stronger correlations in luminal B HER2 negative (p=0.632, p=0.002), and positive (p=0.324, p=0.026) tumors. In contrast, in triple negative tumors, a positive association stromal aromatase and Ki67 index (p=-0.359, p=0.007) was observed. Conclusion. Local aromatase was linked to better tumor differentiation and proliferation in luminal breast subtypes, and not in triple negative cases, suggesting a potential prognostic role of aromatase in breast carcinomas.
Background The adipocyte expansion is a critical process with implications in the pathogenesis of obesity associated metabolic syndrome. Impaired adipogenesis leads to dysfunctional, hypertrophic adipocytes, local inflammation and peripheric insulin resistance. Methods We assessed the relationship between the adipogenic differentiation capacity of the subcutaneous adipose derived stem cells (ASCs), evaluated by total lipid accumulation, and the metabolic and hormonal profile in a group of obese female patients proposed for bariatric surgery ( N = 20) versus normal weight female controls ( N = 7). Results The lipid accumulation (measured as optical density at 492 nm) of ASCs during their differentiation to adipocytes was significantly lower in ASCs isolated from obese patients as compared to ASCs isolated from normal weight patients (0.49 ± 0.1 vs. 0.71 ± 0.1, p < 0.001). Significant negative correlations between lipid accumulation in adipogenic differentiated ASCs and plasma concentrations of triglycerides ( p < 0.01), insulin ( p < 0.001), HOMA-IR (p < 0.01), adiponectin ( p < 0.05) and leptin/adiponectin ratio ( p < 0.05) were found in obese group. Conclusions In severely obese female patients, the abnormal adipogenesis is related to insulin resistance and leptin/adiponectin ratio. The abnormal lipid accumulation in the mature adipocyte derived from obese ASCs could possible predict the further development of type 2 diabetes mellitus in severely obese patients and influence the selection of patients for bariatric surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.