Predator-induced phenotypic plasticity describes the ability of prey to respond to an increased predation risk by developing adaptive phenotypes. Upon the perception of chemical predator cues, the freshwater crustacean Daphnia longicephala develops defensive crests against its predator Notonecta spec. (Heteroptera). Chemical predator perception initiates a cascade of biological reactions that leads to the development of these morphological features. Neuronal signaling is a central component in this series, however how the nervous system perceives and integrates environmental signals is not well understood. As neuronal activity is often accompanied by functional and structural plasticity of the nervous system, we hypothesized that predator perception is associated with structural and functional changes of nervous tissues. We observe structural plasticity as a volume increase of the central brain, which is independent of the total number of brain cells. In addition, we find functional plasticity in form of an increased number of inhibitory post-synaptic sites during the initial stage of defense development. Our results indicate a structural rewiring of nerve-cell connections upon predator perception and provide important insights into how the nervous system of prey species interprets predator cues and develops cost–benefit optimized defenses.
Changes in land use/land cover (LULC) are the key factors driving biodiversity and ecosystem services decline globally. This study examines spatiotemporal LULC changes in a Ramsar coastal temporary wetland (Larnaca Salt Lake) on the island of Cyprus between 1963 and 2015. LULC changes in the area are related to variations in the provision of ecosystem services (ES) namely food provision, climate regulation, avifauna support and landscape aesthetics. LULC mapping was performed based on the interpretation of aerial photos taken in 1963, while 2015 mapping was based on CORINE classification validated by satellite image analysis and fieldwork. We used the following indicators for the ES examined: (1) crops’ yield for the estimation of food supply, (2) carbon storage potential for climate regulation, (3) land cover potential to support avifauna richness and (4) naturalness as a proxy for landscape aesthetics. Quantifications were based on a mixed-methods approach with the use of statistical data, expert opinion and bibliography. Estimates for every service were assigned to CORINE land use classes (CLC) present in the area. Landscape structure was measured using a suite of commonly employed landscape metrics. The results showed that between 1963 and 2015 there has been a significant reduction in food provisioning service by 75%, a 37% reduction in carbon storage capacity, an 11% reduction in the capacity to support avifauna, and a 13% reduction in landscape aesthetics. Increased soil surface sealing, mainly with the construction of the international airport, which resulted in the conversion of natural or semi-natural to artificial surfaces, has been the main reason for the decrease in ES supply over the last fifty years in the study area. The character of the area in terms of land use types richness and diversity remains fairly stable but the dominant land use types have experienced fragmentation. The study sets the basis for a monitoring scheme to evaluate the state of the temporary wetlands with emphasis placed on spatial processes as a link to ES provision.
Ciliates are unicellular protists of the phylum Ciliophora and found in high abundances in water systems world-wide. Today their important ecological role in all aquatic systems is well known. However, morphological species identification in ciliates is difficult due to sometimes tiny
morphological characteristics. We here present a simplified method visualizing all important species classification patterns. We focused on species identification in the genus Euplotes using immunocytochemistry and confocal laser scanning microscopy. With these tools, we identify and
describe the shape of the interphase macronucleus, the number and distribution of the ventral cirri as well as the species-specific body surface tubulin pattern. We visualize and describe three species difficult to distinguish: Euplotes octocarinatus, Euplotes aediculatus and
Euplotes daidaleos. Species identification was subsequently validated with the help of 18S rDNA genome sequencing. We anticipate that this method can also be applied for the identification of different ciliate species in a cost and time effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.