Fungal infections constitute an emerging threat and a prevalent health problem due to increasing number of immunocompromised people and pharmacological or other treatments aiming at viral infections, cancer or allergies. Currently used antifungals suffer from inefficiency, toxic side effects and developing drug-resistance. Additionally, over the last two decades no new classes of antifungals have been approved, emphasizing the urgent need for developing a novel generation of antifungals. Here, we investigate the antifungal activity of a series of chemically synthesized Hydroxytyrosol (HT) analogs. HT is one of the major phenolic compounds in olive oil, shown to possess radical-scavenging antioxidant, antiproliferative, proapoptotic and anti-inflammatory activities. No previous report has studied HT analogs as antifungals. We show that specific analogs have broad and strong antifungal activity, significantly stronger than the parent compound HT. Using Aspergillus nidulans as an in vivo cellular model system, we show that antifungal HT analogs have an unprecedented efficiency in fungal plasma membrane destruction. Importantly, antifungal HT analogs did not show toxicity in a mammalian cell line, whereas no resistance to HT analogs was obtained by standard mutagenesis. Our results open the way for the development of a novel, efficient and safer class of antifungals.
Key words: fungal pathogens/Aspergillus nidulans/plasma membrane/antimicrobial/resistance Fungal infections constitute an emerging threat and a prevalent health problem due to increasing number of immunocompromised people and pharmacological or other treatments aiming at viral infections, cancer or allergies. Currently used antifungals suffer from inefficiency, toxic side effects and developing drug-resistance. Additionally, over the last two decades no new classes of antifungals have been approved, emphasizing the urgent need for developing a novel generation of antifungals. Here we investigate the antifungal activity of a series of chemically synthesized Hydroxytyrosol (HT) analogues. ΗΤ is one of the major phenolic compounds in olive oil, shown to possess radical-scavenging antioxidant, antiproliferative, proapoptotic and anti-inflammatory activities. No previous report has studied HT analogues as antifungals. We show that specific analogues have broad and strong antifungal activity, significantly stronger than the parent compound HT. Using A. nidulans as an in vivo cellular model system, we show that antifungal HT analogues have an unprecedented efficiency in fungal plasma membrane destruction. Importantly, antifungal HT analogues did not show toxicity in a mammalian cell line, whereas no resistance to HT analogues was obtained by standard mutagenesis. Our results open the way for the development of a novel, efficient and safer class of antifungals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.