In this survey, a comprehensive study is provided, regarding the use of machine learning (ML) algorithms for effective resource management in fifth-generation and beyond (5G/B5G) wireless cellular networks. The ever-increasing user requirements, their diverse nature in terms of performance metrics and the use of various novel technologies, such as millimeter wave transmission, massive multipleinput-multiple-output configurations and non-orthogonal multiple access, render the multi-constraint nature of the radio resource management (RRM) problem. In this context, ML and mobile edge computing (MEC) constitute a promising framework to provide improved quality of service (QoS) for end users, since they can relax the RMM-associated computational burden. In our work, a state-of-the-art analysis of ML-based RRM algorithms, categorized in terms of learning type and potential applications as well as MEC implementations,is presented, to define the best-performing solutions for various RRM sub-problems. To demonstrate the capabilities and efficiency of ML-based algorithms in RRM, we apply and compare different ML approaches for throughput prediction, as an indicative RRM task. We investigate the problem, either as a classification or as a regression one, using the corresponding metrics in each occasion. Finally, open issues, challenges and limitations concerning AI/ML approaches in RRM for 5G and B5G networks, are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.