Ιn this review article, a comprehensive study is provided regarding the latest achievements in simulation techniques and platforms for fifth generation (5G) wireless cellular networks. In this context, the calculation of a set of diverse performance metrics, such as achievable throughput in uplink and downlink, the mean Bit Error Rate, the number of active users, outage probability, the handover rate, delay, latency, etc., can be a computationally demanding task due to the various parameters that should be incorporated in system and link level simulations. For example, potential solutions for 5G interfaces include, among others, millimeter Wave (mmWave) transmission, massive multiple input multiple output (MIMO) architectures and non-orthogonal multiple access (NOMA). Therefore, a more accurate and realistic representation of channel coefficients and overall interference is required compared to other cellular interfaces. In addition, the increased number of highly directional beams will unavoidably lead to increased signaling burden and handovers. Moreover, until a full transition to 5G networks takes place, coexistence with currently deployed fourth generation (4G) networks will be a challenging issue for radio network planning. Finally, the potential exploitation of 5G infrastructures in future electrical smart grids in order to support high bandwidth and zero latency applications (e.g., semi or full autonomous driving) dictates the need for the development of simulation environments able to incorporate the various and diverse aspects of 5G wireless cellular networks.
Diffraction of electromagnetic waves by periodic grating waveguides is investigated by using a rigorous integral equation method, which combines semianalytical techniques and the Method of Moments with entire domain basis functions. The electric field integral equation is employed with unknown function the electric field on the grooves. This equation is subsequently solved by applying an entire domain Galerkin's technique. The proposed analysis provides high numerical stability and controllable accuracy. All the involved computations are analytically carried out, leading to an analytic solution with the sole approximation of the final truncation of the expansion functions sets. The computed results exhibit superior accuracy and numerical efficiency compared with those already derived by applying different methods. The effect of the incident field's and grating's characteristics on the diffraction process as well as the grating structure's efficient operation as a narrow band reflection filter are thoroughly investigated. The numerical results obtained provide design guidelines, which may be exploited appropriately in the development of millimeter and optical waveguide structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.