CD40 ligand (CD40L, CD154), a transmembrane protein structurally related to the cytokine TNF-alpha, was originally identified on stimulated CD4+ T cells, and later on stimulated mast cells and basophils. Interaction of CD40L on T cells with CD40 on B cells is of paramount importance for the development and function of the humoral immune system. CD40 is not only constitutively present on B cells, but it is also found on monocytes, macrophages and endothelial cells, suggesting that CD40L has a broader function in vivo. We now report that platelets express CD40L within seconds of activation in vitro and in the process of thrombus formation in vivo. Like TNF-alpha and interleukin-1, CD40L on platelets induces endothelial cells to secrete chemokines and to express adhesion molecules, thereby generating signals for the recruitment and extravasation of leukocytes at the site of injury. Our results indicate that platelets are not only involved in haemostasis but that they also directly initiate an inflammatory response of the vessel wall.
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
AP-1 family transcription factors have been implicated in the control of proliferation, apoptosis and malignant transformation. However, their role in oncogenesis is unclear and no recurrent alterations of AP-1 activities have been described in human cancers. Here, we show that constitutively activated AP-1 with robust c-Jun and JunB overexpression is found in all tumor cells of patients with classical Hodgkin's disease. A similar AP-1 activation is present in anaplastic large cell lymphoma (ALCL), but is absent in other lymphoma types. Whereas c-Jun is up-regulated by an autoregulatory process, JunB is under control of NF-kappa B. Activated AP-1 supports proliferation of Hodgkin cells, while it suppresses apoptosis of ALCL cells. Furthermore, AP-1 cooperates with NF-kappa B and stimulates expression of the cell-cycle regulator cyclin D2, proto-oncogene c-met and the lymphocyte homing receptor CCR7, which are all strongly expressed in primary HRS cells. Together, these data suggest an important role of AP-1 in lymphoma pathogenesis.
Notch signaling controls cell fate decisions of hematopoietic progenitors by inhibiting certain steps of differentiation and inducing either self-renewal or differentiation toward lymphoid or myeloid lineages. In addition, truncated Notch1 alleles could be associated with 10% of all cases of human T lymphoblastic leukemia and, when introduced into mouse bone marrow stem cells, cause T-cell neoplasms. However, functional links between the abundant expression of intact Notch1 and oncogenesis are still lacking. Here we show that Notch1 is highly expressed in B-and T-cell-derived tumor cells of Hodgkin and anaplastic large cell lymphoma. We demonstrate a novel mechanism for the oncogenic capacity of Notch1 by showing that the interaction between intact Notch1 on tumor cells and its ligand Jagged1 dramatically induces proliferation and inhibition of apoptosis in vitro. We further provide evidence that in Hodgkin and anaplastic large cell lymphoma, Jagged1 is expressed in malignant and in bystander cells colocalizing with Notch1-positive tumor cells. Notch1 signaling may therefore be activated in tumor cells by Jagged1 through homotypic or heterotypic cell-cell interactions, and it seems likely that these interactions contribute to lymphomagenesis in vivo. Thus, our data suggest that activated Notch1 signaling plays an important role in the pathobiology of Hodgkin and anaplastic large cell lymphoma and that it might be a potential new target for treatment. ( It has further been demonstrated that HRS cells contain nonfunctional immunoglobulin (Ig) genes, suggesting that they are derived from germinal center cells that should have been negatively selected but were rescued from apoptosis by cellular transforming events. 3,4 Our previous work has provided evidence that constitutive NF-B activity is a survival factor for HRS cells. [5][6][7][8] We have directly manipulated the NF-B system and overexpressed a dominant-negative version of the inhibitor IB␣. HRS cells depleted of constitutive nuclear NF-B reveal decreased proliferation rates, enhanced apoptotic response, and strongly impaired tumor growth in severe combined immunodeficient mice. 7 To investigate molecular alterations of the NF-B/IB system that might be responsible for constitutive NF-B activity, we have analyzed the IB␣ gene. 9 We and others have demonstrated mutations of the IB␣ gene in a subset of HD cases that contribute to constitutive NF-B activation and are involved in the pathogenesis of HD. 9,10 To evaluate additional molecular mechanisms that lead to constitutive NF-B activity in HRS cells, and because activated Notch signaling has been implicated in the regulation of NF-B, 11-13 we analyzed Notch1 gene expression in cultured and primary HRS cells.Notch1 belongs to a family of transmembrane receptors that control cell proliferation and differentiation in response to extracellular ligands expressed on neighboring cells. 14-18 Notch1 has been isolated as a translocation in human acute T-cell lymphoblastic leukemia-lymphoma, 19 and its constitutively ac...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.