We investigate a seismic crisis that occurred in the western Gulf of Corinth (Greece) between December 2020 and February 2021. This area is the main focus of the Corinth Rift Laboratory (CRL) network, and has been closely monitored with local seismological and geodetic networks for 20 yr. The 2020–2021 seismic crisis evolved in three stages: It started with an Mw 4.6 event near the northern shore of the Gulf, opposite of Aigion, then migrated eastward toward Trizonia Island after an Mw 5.0 event, and eventually culminated with an Mw 5.3 event, ∼3 km northeast of the Psathopyrgos fault. Aftershocks gradually migrated westward, triggering another cluster near the junction with the Rion–Patras fault. Moment tensor inversion revealed mainly normal faulting; however, some strike-slip mechanisms also exist, composing a complex tectonic regime in this region dominated by east–west normal faults. We employ seismic and geodetic observations to constrain the geometry and kinematics of the structures that hosted the major events. We discuss possible triggering mechanisms of the second and third stages of the sequence, including fluids migration and aseismic creep, and propose potential implications of the Mw 5.3 mainshock for the seismic hazard of the region.
Physical laws governing friction on shallow faults in the Earth and spatial heterogeneity of parameters are critical to our understanding of earthquake physics and the assessment of earthquake hazards. Here we use a laboratory-derived fault-friction law and high-quality strong-motion seismic recordings of the 2020 Elazığ earthquake, Turkey, to reveal the complex rupture dynamics. We discover an initial Mw 5.8 rupture stage and explain how cascading behavior of the event, involving at least three episodes, each of M > 6, caused it to evolve into a large earthquake, contrarily to other M5+ events on this part of the East Anatolian Fault. Although the dynamic stress transfer during the rupture did not overcome the strength of the uppermost ~5 kilometers, surface ruptures during future earthquakes cannot be ruled out. We foresee that future, routine dynamic inversions will improve understanding of earthquake rupture parameters, an essential component of modern, physics-based earthquake hazard assessment.
The National Observatory of Athens data center for the European Integrated Data Archive (EIDA@NOA) is the national and regional node that supports International Federation of Digital Seismograph Networks and related webservices for seismic waveform data coming from the southeastern Mediterranean and the Balkans. At present, it serves data from eight permanent broadband and strong-motion networks from Greece and Cyprus, individual stations from the Balkans, temporary networks and aftershock deployments, and earthquake engineering experimental facilities. EIDA@NOA provides open and unlimited access from redundant node end points, intended mainly for research purposes (see Data and Resources). Analysis and quality control of the complete seismic data archive is performed initially by calculating waveform metrics and data availability. Seismic ambient noise metrics are estimated based on power spectral densities, and an assessment of each station’s statistical mode is achieved within each network and across networks. Moreover, the minimum ambient noise level expected for strong-motion installations is defined. Sensor orientation is estimated using surface-wave polarization methods to detect stations with misalignment on particular epochs. A single data center that hosts the complete seismic data archives with their respective metadata from networks covering similar geographical areas allows coordination between network operators and facilitates the adhesion to widely used best practices regarding station installation, data curation, and metadata definition. The overall achievement is harmonization among all contributing networks and a wider usage of all data archives, ultimately strengthening seismological research efforts in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.