The common grape vine, Vitis vinifera, is a widely known plant with commercial and pharmacological value. The plant hosts a variety of microorganisms known as endophytes that can live within the tissues of the plant for a considerable time period, or even their whole life cycle. The fungus Beauveria bassiana is a well-studied endophyte which can colonize a variety of plants in many ways and in different parts of the plant. In this study, we examined the effect of the endophytic fungus B. bassiana on the growth of V. vinifera. The results demonstrated not only a successful colonization of the endophyte, but also a noteworthy impact on the growth of the V. vinifera root without harming the plant in any way. The fungus was also re-isolated from the parts of the plant using inst bait method. Overall, the study demonstrates the capability of B. bassiana to colonize V. vinifera plants, adding to the already existing knowledge of its endophytic activity, and highlighting its beneficial impact on the root growth.
Aphids are among the most harmful crop pests, damaging plants by sucking sap or by transmitting pathogenic viruses. Plant infestation by aphids depends on their population growth. Entomopathogenic fungi are essential participants of terrestrial and aquatic ecosystems, regulating arthropod communities. Many fungal species with a symbiotic–endophytic relation with plants are pathogenic, producing insecticides or insect repellents. The present study investigated the effects of the fungal entomopathogens Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea, following their endophytic colonization of the sweet pepper Capsicum annum, on the development of the green peach aphid Myzus persicae. After 21 days, B. bassiana produced 100% aphid mortality, M. anisopliae 90% and I. fumosorosea 83.3%. There were also significant differences in terms of the effect on aphid population in planta and on the survival time of young adults in planta. External mycelium appeared within 96 h after placing aphid cadavers on damp filter paper. PCR confirmed that the mycelium was of B. bassiana, M. anisopliae and I. fumosorosea. DNA sequences collected from this work were matched with existing sequences data in GenBank, using the Basic Local Alignment Search Tool. Our results showed that none of the three fungal isolates had an effect in promoting or suppressing the growth of C. annum.
The insecticidal virulence of various entomopathogenic fungal isolates retrieved from soil samples was tested on adults of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae). Bioassays were carried out in the laboratory where experimental adults were sprayed with 1 mL of conidial suspension (108 conidia/mL) from each isolate. Mortality was recorded at 7, 14, and 21 days after exposure. Mean mortality, mean lethal time, survival, and hazard effect were estimated for each isolate. Two isolates of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), one isolate of Aspergillus insuetus (Bainier) Thom & Church (Eurotiales: Trichocomaceae) and Metarhizium anisopliae (Metschinkoff) Sorokin (Hypocreales: Clavicipitaceae) resulted in the highest mortality (97–100%). The isolates with both the highest hazard effect and the lowest survival rate were Aspergillus sp. and M. anisopliae. Our results indicate that entomopathogenic fungi have the potential to become a very useful tool in reducing chemical applications in storage facilities.
Trichoderma fungi are promising candidates for biocontrol agents and plant growth promoters. Trichoderma atrobrunneum and T. simmonsii were evaluated for the control of soil-borne phytopathogenic fungi, in the present study. Dual culture tests with Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici were used to conduct in vitro evaluation. In the presence of Trichoderma, phytopathogen’s growth rate was inhibited up to 59.70% for R. solani and 42.57% for F. oxysporum. Greenhouse trials with potted tomato plants demonstrated that Trichoderma caused a significant increase of stem height and fresh stem weight in pathogen-inoculated plants, compared with the negative control (plants artificially inoculated with the phytopathogen only). Except for T. simmonsii, plant growth was not significantly enhanced by a Trichoderma presence in the positive control (healthy plants). The overall performance of the two Trichoderma species studied was equivalent to that of the T. harzianum T22 commercial strain. All the tested species were found to be effective in suppressing colony growth and disease development of the soil borne pathogens in dual cultures and potted plants, indicating that they could be used as biocontrol agents. Our findings are discussed in the context of enhancing endophytic microorganisms’ application in crop production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.