The COVID-19 pandemic has affected many aspects of human life around the world, due to its tremendous outcomes on public health and socio-economic activities. Policy makers have tried to develop efficient responses based on technologies and advanced pandemic control methodologies, to limit the wide spreading of the virus in urban areas. However, techniques such as social isolation and lockdown are short-term solutions that minimize the spread of the pandemic in cities and do not invert long-term issues that derive from climate change, air pollution and urban planning challenges that enhance the spreading ability. Thus, it seems crucial to understand what kind of factors assist or prevent the wide spreading of the virus. Although AI frameworks have a very efficient predictive ability as data-driven procedures, they often struggle to identify strong correlations among multidimensional data and provide robust explanations. In this paper, we propose the fusion of a heterogeneous, spatio-temporal dataset that combine data from eight European cities spanning from 1 January 2020 to 31 December 2021 and describe atmospheric, socio-economic, health, mobility and environmental factors all related to potential links with COVID-19. Remote sensing data are the key solution to monitor the availability on public green spaces between cities in the study period. So, we evaluate the benefits of NIR and RED bands of satellite images to calculate the NDVI and locate the percentage in vegetation cover on each city for each week of our 2-year study. This novel dataset is evaluated by a tree-based machine learning algorithm that utilizes ensemble learning and is trained to make robust predictions on daily cases and deaths. Comparisons with other machine learning techniques justify its robustness on the regression metrics RMSE and MAE. Furthermore, the explainable frameworks SHAP and LIME are utilized to locate potential positive or negative influence of the factors on global and local level, with respect to our model’s predictive ability. A variation of SHAP, namely treeSHAP, is utilized for our tree-based algorithm to make fast and accurate explanations.
In this paper, a detailed study and implementation of a reliable and efficient regenerative braking system is presented. It is applied on a prototype electric vehicle, that uses a hydrogen fuel cell as its only power source. Supercapacitors are used to store the energy that is generated during braking, transistors for switching the alternative circuits and an embedded computer controller program undertakes the synchronization of the system tasks. A finite state machine was designed to create a simple but robust technique to control the transistor switches according to the system's sensory inputs. The system is powered by its own supercapacitors, and thus it may be used in a plug-and-play manner. On-road test drives proved the system's reliability and efficiency.
In this study, we propose a tensor-based learning model to efficiently detect abnormalities on digital mammograms. Due to the fact that the availability of medical data is limited and often restricted by GDPR (general data protection regulation) compliance, the need for more sophisticated and less data-hungry approaches is urgent. Accordingly, our proposed artificial intelligence framework utilizes the canonical polyadic decomposition to decrease the trainable parameters of the wrapped Rank-R FNN model, leading to efficient learning using small amounts of data. Our model was evaluated on the open source digital mammographic database INBreast and compared with state-of-the-art models in this domain. The experimental results show that the proposed solution performs well in comparison with the other deep learning models, such as AlexNet and SqueezeNet, achieving 90% ± 4% accuracy and an F1 score of 84% ± 5%. Additionally, our framework tends to attain more robust performance with small numbers of data and is computationally lighter for inference purposes, due to the small number of trainable parameters.
In Cultural Heritage, hyperspectral images are commonly used since they provide extended information regarding the optical properties of materials. Thus, the processing of such high-dimensional data becomes challenging from the perspective of machine learning techniques to be applied. In this paper, we propose a Rank-R tensor-based learning model to identify and classify material defects on Cultural Heritage monuments. In contrast to conventional deep learning approaches, the proposed high order tensor-based learning demonstrates greater accuracy and robustness against overfitting. Experimental results on real-world data from UN-ESCO protected areas indicate the superiority of the proposed scheme compared to conventional deep learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.