BackgroundSepsis is associated with systemic inflammatory responses and induction of coagulation system. Neutrophil extracellular traps (NETs) constitute an antimicrobial mechanism, recently implicated in thrombosis via platelet entrapment and aggregation.Methodology/Principal FindingsIn this study, we demonstrate for the first time the localization of thrombogenic tissue factor (TF) in NETs released by neutrophils derived from patients with gram-negative sepsis and normal neutrophils treated with either serum from septic patients or inflammatory mediators involved in the pathogenesis of sepsis. Localization of TF in acidified autophagosomes was observed during this process, as indicated by positive LC3B and LysoTracker staining. Moreover, phosphatidylinositol 3-kinase inhibition with 3-MA or inhibition of endosomal acidification with bafilomycin A1 hindered the release of TF-bearing NETs. TF present in NETs induced thrombin generation in culture supernatants, which further resulted in protease activated receptor-1 signaling.Conclusions/SignificanceThis study demonstrates the involvement of autophagic machinery in the extracellular delivery of TF in NETs and the subsequent activation of coagulation cascade, providing evidence for the implication of this process in coagulopathy and inflammatory response in sepsis.
Acute respiratory distress syndrome (ARDS) is characterized by the presence of fibrin-rich inflammatory exudates in the intra-alveolar spaces and the extensive migration of neutrophils into alveoli of the lungs. Tissue factor (TF)-dependent procoagulant properties of bronchoalveaolar lavage fluid (BALF) obtained from ARDS patients favor fibrin deposition, and are likely the result of cross-talk between inflammatory mediators and hemostatic mechanisms. However, the regulation of these interactions remains elusive. Prompted by previous findings suggesting that neutrophils, under certain inflammatory conditions, can express functional TF, we investigated the contribution of intra-alveolar neutrophils to the procoagulant properties of BALF from patients with ARDS. Our results confirm that the procoagulant properties of BALF from ARDS patients are the result of TF induction, and further indicate that BALF neutrophils are a main source of TF in intra-alveolar fluid. We also found that BALF neutrophils in these patients express significantly higher levels of TF than peripheral blood neutrophils. These results suggest that the alveolar microenvironment contributes to TF induction in ARDS. Additional experiments indicated that the ability of BALF to induce TF expression in neutrophils from healthy donors can be abolished by inhibiting C5a or TNF-α signaling, suggesting a primary role for these inflammatory mediators in the up-regulation of TF in alveolar neutrophils in ARDS. This cross-talk between inflammatory mediators and the induction of TF expression in intra-alveolar neutrophils may be a potential target for novel therapeutic strategies to limit ARDS-associated disturbances of coagulation.
Systemic autoimmune diseases, a heterogeneous group of immunologically mediated inflammatory disorders including multiorgan involvement, can affect the pleura with various frequencies, either as a single presenting feature or as part of multisystem involvement. Rheumatoid arthritis and systemic lupus erythematosus represent the most common immunological diseases that affect the pleural cavity; however, there is considerable variation regarding the reported prevalence, natural history and prognosis of pleural involvement in both conditions. The definition of pleural disease in the remaining systemic autoimmune disorders is unquestionably imprecise and assumptive, since it is risky to support premises based on single case reports or retrospective data from very small series. In this article, we will review the manifestations of pleural disease caused by rheumatoid arthritis, systemic lupus erythematosus, scleroderma, polymyositis/dermatomyositis, mixed connective tissue disease, ankylosing spondylitis, Sjögren’s syndrome and Wegener’s granulomatosis.
Many experimental and clinical studies have confirmed a continuous cross-talk between both sympathetic and parasympathetic branches of autonomic nervous system and inflammatory response, in different clinical scenarios. In cardiovascular diseases, inflammation has been proven to play a pivotal role in disease progression, pathogenesis and resolution. A few clinical studies have assessed the possible inter-relation between neuro-autonomic output, estimated with heart rate variability analysis, which is the variability of R-R in the electrocardiogram, and different inflammatory biomarkers, in patients suffering from stable or unstable coronary artery disease (CAD) and heart failure. Moreover, different indices derived from heart rate signals' processing, have been proven to correlate strongly with severity of heart disease and predict final outcome. In this review article we will summarize major findings from different investigators, evaluating neuro-immunological interactions through heart rate variability analysis, in different groups of cardiovascular patients. We suggest that markers originating from variability analysis of heart rate signals seem to be related to inflammatory biomarkers. However, a lot of open questions remain to be addressed, regarding the existence of a true association between heart rate variability and autonomic nervous system output or its adoption for risk stratification and therapeutic monitoring at the bedside. Finally, potential therapeutic implications will be discussed, leading to autonomic balance restoration in relation with inflammatory control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.