This manuscript introduces a light harvesting system with battery management. In contrast to relevant solutions that operate in limited ranges, the proposed system covers a wide operating input power range from 10 uW up to 300 mW. Specifically, experimental results highlight that, combined with a 73 × 94 mm flexible light harvester, it can harness light in a range from 50 LUX (indoor lighting) up to 120,000 LUX (outdoor lighting). The introduced system consists of a boost converter and an ultra-low power microcontroller (MCU). The MCU performs Global Maximum Power Point Tracking (GMPPT), using a resistor-free time-based input power sensing method, to calculate the input power of the converter, which does not interfere with the operation of the boost converter. The efficiency of the GMPPT system was evaluated with detailed experimentation, where we achieved 99.75% average GMPPT tracking efficiency while consuming only 73.5 uW at 4.2 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.