Summary. One-cell CF-1 \m=x\ B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mM-glutamine and 0\m=.\1mM-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3\p=n-\4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33\m=.\7total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.
One-cell embryos from several different strains of mice have been cultured to the blastocyst stage in CZB medium. CZB medium can be used to culture CF1 x B6SJLF1/J 1-cell embryos to the blastocyst stage provided glucose is introduced into the medium on Day 3 of culture. The amount of glucose required for embryo development was titrated using a concentration range of 5.5 to 49.5 mM. With the exception of the highest concentration, all glucose levels tested supported 65-85% development to the morula and blastocyst stages. Variations of CZB medium were tested for their ability to support the development of 1-cell embryos from 4 strains of mice. For embryos from CF1 and DBA/2J (both x B6SJLF1/J) mice, which exhibit a "2-cell block" to development in vitro, CZB medium containing glutamine with the addition of glucose on Day 3 supported optimum development from the 1-cell stage to morula and blastocysts (79% and 87%). For embryos from B6D2F1/J and CD1 female mice (both x B6SJLF1/J males), which do not exhibit a "2-cell block" to in vitro development, optimum development to morula and blastocyst stages (95% and 50%) was in CZB medium containing both glutamine and glucose from the start of culture.
One-cell mouse embryos that block at the 2-cell stage can progress to the morula stage in CZB medium, but fail to cavitate and then swell and lyse. A 1-min exposure to 27 mM glucose at the 4-cell stage (approximately 42 hr) will support a high frequency of development to the blastocyst stage (75%) in the same medium. A glucose exposure is beneficial anytime between 30 and 54 hr of culture (67-73% blastocysts). Of a group of additional sugars and glucose analogues tested for their ability to replace glucose, only galactose was equivalent in promoting embryo development to the blastocyst stage (64% blastocysts).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.