Mobile personalized learning can be achieved by the identification of students’ learning styles; however, this happens with the completion of large questionnaires. This task has been reported as tedious and time-consuming, causing random selection of the questionnaires’ choices, and thus, erroneous adaptation to students’ needs, endangering knowledge acquisition. Moreover, mobile environments render the selection of questionnaires’ choices impractical due to confined mobile user interfaces. In view of the above, this paper presents Learnglish, a fully developed mobile language learning system incorporating automatic identification of students’ learning styles according to the Felder-Silverman model (FSLSM) using ensemble classification. In particular, three classifiers, namely SVM, NB and KNN, are combined based on the majority voting rule. The major innovation of this task, apart from the ensemble classification and the mobile learning environment, is that Learnglish takes as input a minimum number of personal (i.e., age and gender) and cognitive characteristics (i.e., prior academic performance categorized using fuzzy weights), and solely four questions pertaining to the FSLSM dimensions, to identify the learning style. Furthermore, Learnglish incorporates adapted instructional routines to create an individualized learning environment based on students’ learning preferences as determined by their style. Learnglish was fully evaluated with very encouraging results.
The detection of robustly detectable sequential faults has been extensively studied. A number of researchers have provided theoretical as well as experimental results designating that the application of single input change (SIC) pairs of test patterns results in favorable results for sequential fault testing. In this paper, a novel algorithm for the generation of SIC pairs is presented, termed Accumulator-based test generation for Robust sequential fault testing in Near-optimal time (ARN). ARN is implemented in hardware utilizing an accumulator whose inputs are driven by a barrel shifter. Since such structures are commonly found in general-purpose or specialized microprocessors or digital signal processors (DSP), the presented architecture provides a practical solution for the built-in testing of such circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.