This paper reports on an experimental study carried out to better understand the wind pressure distribution on stand-alone panel surfaces and panels attached to flat building roofs. A complex model capable to incorporate solar panels at different locations and various inclinations was constructed at a 1:200 geometric scale. Three model panels equipped with pressure taps on both surfaces (36 in total) for point and area-averaged pressure measurements were used. Pressure and force coefficients were computed for every pressure tap and for all the panels. Different configurations were tested under similar conditions in order to examine the effect of various parameters on the experimental results. A minimal gap occurred between the solar panels and the roof of the model. The study found that the net values of pressure coefficients corresponding to different configurations are affected by the panel inclination for the critical 135-degree wind direction, for which panels on the back location undergo higher suctions in comparison to those in the front. The effect of building height on the solar collector total load is minimal, whereas corner panels are subjected to higher net loads for critical azimuths. Simplified net pressure coefficients for the design of solar panels are provided.
a b s t r a c tThe wind-induced response of low-rise wood buildings has been evaluated by monitoring a specially instrumented test building exposed to real wind action. The field facilities included a state-of-the-art data acquisition system which collected wind, pressure and force data. In addition to the field monitoring, a 1:200 scaled model of the test building was tested in the wind tunnel and the envelope wind pressures were estimated for various terrain exposures. The wind-induced pressures obtained from both the full-scale and wind tunnel experiments were incorporated in the finite element model of the test building and its response was numerically derived.Vast amounts of experimental data were generated during the long-term monitoring of the test building. These data were used to successfully verify the simulation approaches in terms of both wind-induced pressures and structural forces. Some limited discrepancies were observed in the peak pressure coefficients for locations close to the roof ridge and corners. The field acquired force data revealed that the majority of the wind uplift force is supported by the two side walls. Moreover, it was experimentally verified that the wind-induced load was attenuated as it was transferred through the buildings' structural system. This attenuation was estimated to be at least 17%, as far as the total foundation uplift force is concerned, and reached the 28% for certain approaching wind directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.