We present a multiattentive recurrent neural network architecture for automatic multilingual readability assessment. This architecture considers raw words as its main input, but internally captures text structure and informs its word attention process using other syntax- and morphology-related datapoints, known to be of great importance to readability. This is achieved by a multiattentive strategy that allows the neural network to focus on specific parts of a text for predicting its reading level. We conducted an exhaustive evaluation using data sets targeting multiple languages and prediction task types, to compare the proposed model with traditional, state-of-the-art, and other neural network strategies.
Most research efforts related to automatic readability assessment focus on the design of strategies that apply to a specific language. These state‐of‐the‐art strategies are highly dependent on linguistic features that best suit the language for which they were intended, constraining their adaptability and making it difficult to determine whether they would remain effective if they were applied to estimate the level of difficulty of texts in other languages. In this article, we present the results of a study designed to determine the feasibility of a cross‐lingual readability assessment strategy. For doing so, we first analyzed the most common features used for readability assessment and determined their influence on the readability prediction process of 6 different languages: English, Spanish, Basque, Italian, French, and Catalan. In addition, we developed a cross‐lingual readability assessment strategy that serves as a means to empirically explore the potential advantages of employing a single strategy (and set of features) for readability assessment in different languages, including interlanguage prediction agreement and prediction accuracy improvement for low‐resource languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.