Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of the patterns in rating datasets reflect important real-world differences between the various users and items in the data; other patterns may be irrelevant or possibly undesirable for social or ethical reasons, particularly if they reflect undesired discrimination, such as gender or ethnic discrimination in publishing. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to a dimension of social concern, namely content creator gender. Using publicly-available book ratings data, we measure the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms differ in the gender distribution of their recommendation lists, and in the relationship of that output distribution to user profile distribution.
Offline evaluations of recommender systems attempt to estimate users' satisfaction with recommendations using static data from prior user interactions. These evaluations provide researchers and developers with first approximations of the likely performance of a new system and help weed out bad ideas before presenting them to users. However, offline evaluation cannot accurately assess novel, relevant recommendations, because the most novel items were previously unknown to the user, so they are missing from the historical data and cannot be judged as relevant.We present a simulation study to estimate the error that such missing data causes in commonly-used evaluation metrics in order to assess its prevalence and impact. We find that missing data in the rating or observation process causes the evaluation protocol to systematically mis-estimate metric values, and in some cases erroneously determine that a popularity-based recommender outperforms even a perfect personalized recommender. Substantial breakthroughs in recommendation quality, therefore, will be difficult to assess with existing offline techniques. CCS CONCEPTS• Information systems → Evaluation of retrieval results.
Traditional offline evaluations of recommender systems apply metrics from machine learning and information retrieval in settings where their underlying assumptions no longer hold. This results in significant error and bias in measures of top-N recommendation performance, such as precision, recall, and nDCG. Several of the specific causes of these errors, including popularity bias and misclassified decoy items, are well-explored in the existing literature. In this paper we survey a range of work on identifying and addressing these problems, and report on our work in progress to simulate the recommender data generation and evaluation processes to quantify the extent of evaluation metric errors and assess their sensitivity to various assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.