The Arabidopsis thaliana genes PROTEIN INHIBITOR OF ACTIVATED STAT LIKE1 (PIAL1) and PIAL2 encode proteins with SP-RING domains, which occur in many ligases of the small ubiquitin-related modifier (SUMO) conjugation pathway. We show that PIAL1 and PIAL2 function as SUMO ligases capable of SUMO chain formation and require the SUMO-modified SUMOconjugating enzyme SCE1 for optimal activity. Mutant analysis indicates a role for PIAL1 and 2 in salt stress and osmotic stress responses, whereas under standard conditions, the mutants show close to normal growth. Mutations in PIAL1 and 2 also lead to altered sulfur metabolism. We propose that, together with SUMO chain binding ubiquitin ligases, these enzymes establish a pathway for proteolytic removal of sumoylation substrates.
SummaryConjugation of the small ubiquitin‐related modifier (SUMO) to protein substrates has an impact on stress responses and on development. We analyzed the proteome and phosphoproteome of mutants in this pathway. The mutants chosen had defects in SUMO ligase SIZ1, which catalyzes attachment of single SUMO moieties onto substrates, and in ligases PIAL1 and PIAL2, which are known to form SUMO chains. A total of 2657 proteins and 550 phosphopeptides were identified and quantified. Approximately 40% of the proteins and 20% of the phosphopeptides showed differences in abundance in at least one of the analyzed genotypes, demonstrating the influence of SUMO conjugation on protein abundance and phosphorylation. The data show that PIAL1 and PIAL2 are integral parts of the SUMO conjugation system with an impact on stress response, and confirm the involvement of SIZ1 in plant defense. We find a high abundance of predicted SUMO attachment sites in phosphoproteins (70% versus 40% in the total proteome), suggesting convergence of phosphorylation and sumoylation signals onto a set of common targets.
SUMO conjugation is a conserved process of eukaryotes, and essential in metazoa. Different isoforms of SUMO are present in eukaryotic genomes. Saccharomyces cerevisiae has only one SUMO protein, humans have four and Arabidopsis thaliana has eight, the main isoforms being SUMO1 and SUMO2 with about 95 % identity. Functionally similar to human SUMO2 and SUMO3, Arabidopsis SUMO1 and 2 can form chains, even though they do not possess a consensus SUMOylation motif. The surprising finding that plants have dedicated enzymes for chain synthesis implies a specific role for SUMO chains in plants. By the cooperative action with SUMO chain recognizing ubiquitin ligases, chains might channel substrates into the ubiquitin-dependent degradation pathway.A method is described to generate SUMO chains, using plant enzymes produced in E. coli. In vitro SUMO chain formation may serve for further analysis of SUMO chain functions. It can also provide an easy-to-synthesize substrate for SUMO-specific proteases.
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.