The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.
INTRODUCTION Torque of the maxillary incisors is essential in esthetics and proper occlusion, while torque expression is influenced by many factors. The aim of this finite element study was to assess the relative effect of tooth morphology, bracket prescription, and bracket positioning on tooth displacement and developed stresses/strains after torque application. METHODS A three-dimensional upper right central incisor with its periodontal ligament (PDL) and alveolus was modelled. The tooth varied in the crown-root angle (CRA) between 156°, 170°, and 184°. An 0.018-inch slot discovery® (Dentaurum, Ispringen, Germany) bracket with a rectangular 0.018 × 0.025-inch -titanium wire was modelled. Bracket torque prescription varied between 0°, 12°, and 22°, with bracket placement at the centre of the middle, gingival or incisal third of the crown. A total of 27 models were generated and a buccal root torque of 30°was applied. Afterwards, crown and apex displacement, strains in the PDL, and stresses in the bracket were calculated and analysed statistically. RESULTS The palatal crown displacement was significantly affected by bracket positioning (up to 94 per cent), while the buccal apex displacement was significantly affected by bracket prescription (up to 42 per cent) and bracket positioning (up to 23 per cent). Strains in the PDL were affected mainly by CRA (up to 54 per cent), followed by bracket positioning (up to 45 per cent). Finally, bracket prescription considerably affected the stresses in the bracket (up to 144 per cent). LIMITATIONS These in silico results need to be validated in vivo before they can be clinically extrapolated. CONCLUSION Tooth anatomy and the characteristics of the orthodontic appliance should be considered during torque application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.