Despite efforts to improve treatment of refractory cardiogenic shock (rCS), prognosis remains poor. Multidisciplinary Shock Teams have been proposed as a strategy to streamline care delivery and improve outcomes despite the lack of strong evidence 1-5. This study sought to determine the feasibility and efficacy of the Shock Team approach for rCS at our tertiary care institution.
Background Cardiac recovery in response to mechanical unloading by left ventricular assist devices (LVADs) has been demonstrated in subgroups of chronic heart failure (HF) patients. Hallmarks of HF are depletion and disorganization of the transverse tubular system (t-system) in cardiomyocytes. Here, we investigated remodeling of the t-system in human end-stage HF and its role in cardiac recovery. Methods Left ventricular biopsies were obtained from 5 donors (CTRL) and 26 chronic HF patients undergoing implantation of LVADs. Three-dimensional confocal microscopy and computational image analysis were applied to assess t-system structure, density, and distance of ryanodine receptor (RyR) clusters to the sarcolemma, including the t-system. Recovery of cardiac function in response to mechanical unloading was assessed by echocardiography during turn-down of the LVAD. Results The majority of HF myocytes showed remarkable t-system remodeling, particularly sheet-like invaginations of the sarcolemma. Circularity of t-system components was decreased in HF vs CTRL (0.37±0.01 vs 0.46±0.02, p<0.01), and the volume/length ratio was increased in HF (0.36±0.01μm2 vs 0.25±0.02μm2, p<0.0001). T-system density was reduced in HF, leading to increased RyR-sarcolemma distances (0.96±0.05μm vs 0.64±0.1μm, p<0.01). Low RyR-sarcolemma distances at time of LVAD implantation predicted high post-LVAD left-ventricular ejection fractions (EF, p<0.01) and EF increase during unloading (p<0.01). EF in patients with pre-LVAD RyR-sarcolemma distances larger than 1μm did not improve following mechanical unloading. Additionally, calcium transients were recorded in field-stimulated isolated human cardiomyocytes and analyzed with respect to local t-system density. Calcium release in HF myocytes was restricted to regions proximal to the sarcolemma. Local calcium upstroke was delayed (23.9±4.9ms vs 10.3±1.7ms, p<0.05) and more asynchronous (18.1ms±1.5ms vs 8.9±2.2ms, p<0.01) in HF cells with low t-system density versus cells with high t-system density. Conclusions The t-system in end-stage human HF presents a characteristic novel phenotype consisting of sheet-like invaginations of the sarcolemma. Our results suggest that the remodeled t-system impairs excitation-contraction coupling and functional recovery during chronic LVAD unloading. An intact t-system at time of LVAD implantation may constitute a precondition and predictor for functional cardiac recovery following mechanical unloading.
Background: Significant improvements in myocardial structure and function have been reported in some patients with advanced heart failure (termed responders [R]) following left ventricular assist device (LVAD)–induced mechanical unloading. This therapeutic strategy may alter myocardial energy metabolism in a manner that reverses the deleterious metabolic adaptations of the failing heart. Specifically, our previous work demonstrated a post-LVAD dissociation of glycolysis and oxidative-phosphorylation characterized by induction of glycolysis without subsequent increase in pyruvate oxidation through the tricarboxylic acid cycle. The underlying mechanisms responsible for this dissociation are not well understood. We hypothesized that the accumulated glycolytic intermediates are channeled into cardioprotective and repair pathways, such as the pentose-phosphate pathway and 1-carbon metabolism, which may mediate myocardial recovery in R. Methods: We prospectively obtained paired left ventricular apical myocardial tissue from nonfailing donor hearts as well as R and nonresponders at LVAD implantation (pre-LVAD) and transplantation (post-LVAD). We conducted protein expression and metabolite profiling and evaluated mitochondrial structure using electron microscopy. Results: Western blot analysis shows significant increase in rate-limiting enzymes of pentose-phosphate pathway and 1-carbon metabolism in post-LVAD R (post-R) as compared with post-LVAD nonresponders (post-NR). The metabolite levels of these enzyme substrates, such as sedoheptulose-6-phosphate (pentose phosphate pathway) and serine and glycine (1-carbon metabolism) were also decreased in Post-R. Furthermore, post-R had significantly higher reduced nicotinamide adenine dinucleotide phosphate levels, reduced reactive oxygen species levels, improved mitochondrial density, and enhanced glycosylation of the extracellular matrix protein, α-dystroglycan, all consistent with enhanced pentose-phosphate pathway and 1-carbon metabolism that correlated with the observed myocardial recovery. Conclusions: The recovering heart appears to direct glycolytic metabolites into pentose-phosphate pathway and 1-carbon metabolism, which could contribute to cardioprotection by generating reduced nicotinamide adenine dinucleotide phosphate to enhance biosynthesis and by reducing oxidative stress. These findings provide further insights into mechanisms responsible for the beneficial effect of glycolysis induction during the recovery of failing human hearts after mechanical unloading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.